Fractional Breaking Soliton Equation Reduced from a Linear Spectral Problem Associated with Fractional Self-Dual Yang-Mills Equations  

在线阅读下载全文

作  者:ZHANG Sheng MA Lina XU Bo 张盛;马丽娜;徐波(School of Mathematical Sciences,Bohai University,Jinzhou 121013,China;School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China;School of Educational Sciences,Bohai University,Jinzhou 121013,China)

机构地区:[1]School of Mathematical Sciences,Bohai University,Jinzhou 121013,China [2]School of Mathematics,China University of Mining and Technology,Xuzhou 221116,China [3]School of Educational Sciences,Bohai University,Jinzhou 121013,China

出  处:《Journal of Donghua University(English Edition)》2020年第5期402-405,共4页东华大学学报(英文版)

基  金:Liaoning BaiQianWan Talents Program of China(2019);National Natural Science Foundation of China(No.11547005);Natural Science Foundation of Education Department of Liaoning Province of China(2020)。

摘  要:Fractional or fractal calculus is everywhere and very important.It is reported that the fractal approach is suitable for insight into the effect of porous structure on thermo-properties of cloth.A novel local fractional breaking soliton equation is derived from the reduction of the linear spectral problem associated with the local fractional non-isospectral self-dual Yang-Mills equations.More specifically,the employed linear spectral problem is first reduced to the(2+1)-dimensional local fractional zero-curvature equation through variable transformations.Based on the reduced local fractional zero-curvature equation,the fractional breaking soliton equation is then constructed by the method of undetermined coefficients.This paper shows that some other local fractional models can be obtained by generalizing the existing methods of generating nonlinear partial differential equations with integer orders.

关 键 词:fractional calculus local fractional breaking soliton equation local fractional non-isospectral self-dual Yang-Mills equations (2+1)-dimensional local fractional zero-curvature equation 

分 类 号:O1-0[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象