检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋小鹏 古小敏[1] 何秀锦 吴国珊 王斌武 Song Xiaopeng;Gu Xiaomin;He Xiujin;Wu Guoshan;Wang Binwu(School of energy and building environment,Guilin university of aerospace technology,Guangxi,Guilin 541004,China)
机构地区:[1]桂林航天工业学院能源与建筑环境学院,广西桂林541004
出 处:《计算机时代》2020年第12期29-32,共4页Computer Era
基 金:教育部首批“新工科”研究与实践项目“产教融合、政校企合作协同培育能源动力(生物质能)类复合应用型人才的研究和实践”;广西自然科学基金项目“低温余热耦合太阳能光热用于生物质气化制氢的热动力学特性”(2018GXNSFAA281306)。
摘 要:有限元分析过程中,网格剖分除了要对计算域进行剖分,也要对网格单元的定解条件进行标识。文章探讨用Delaunay算法对二维计算域进行剖分,并生成包含定解条件(边界条件和材料属性等)的三角网格单元。对复杂几何图形采用分块策略,将计算域分为若干凸多边形,并对网格质量进行评估。以二维扩散方程为例,使用该算法生成的三角单元网格求解Laplace偏微分方程,计算结果与解析解吻合较好,表明该算法能够生成较高质量的网格单元。In the process of finite element analysis,in addition to generating mesh for the computational domain,it is necessary to identify the solvability conditions of the mesh.Delaunay algorithm has been used to divide the two-dimensional computational domain and generate triangular mesh elements with solvability conditions(boundary conditions,material properties,etc.).The complex computational domain is divided into several convex polygons,and the mesh quality is also calculated.Taking the twodimensional diffusion problem as an example,the triangular element mesh has been generated using the Delaunay algorithm,and the Laplace partial differential equation has been solved.The numerical results are in good agreement with the analytical solution,which shows that the algorithm can generate high-quality mesh elements.
关 键 词:DELAUNAY算法 网格生成 有限元 定解条件
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.158.23