Effective Vietnamese Sentiment Analysis Model Using Sentiment Word Embedding and Transfer Learning  

在线阅读下载全文

作  者:Yong Huang Siwei Liu Liangdong Qu Yongsheng Li 

机构地区:[1]College of Software and Information Security,Guangxi University for Nationalities,Nanning,China [2]College of Mathematics and Computer Science,Guangxi Normal University for Nationalities,Chongzuo,China

出  处:《国际计算机前沿大会会议论文集》2020年第2期36-46,共11页International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)

基  金:Chinese National Science Foundation(#61763007);the higher education research project of National Ethnic Affairs Commission“Research and Practice on the Training Mode of Applied Innovative SoftwareTalents Base on Collaborative Education and innovation” (17056);the InnovationTeam project of Xiangsihu Youth Scholars of Guangxi University For Nationalities。

摘  要:Sentiment analysis is one of the most popular fields in NLP,and with the development of computer software and hardware,its application is increasingly extensive.Supervised corpus has a positive effect on model training,but these corpus are prohibitively expensive to manually produce.This paper proposes a deep learning sentiment analysis model based on transfer learning.It represents the sentiment and semantics of words and improves the effect of Vietnamese sentiment analysis model by using English corpus.It generated semantic vectors through Word2Vec,an open-source tool,and built sentiment vectors through LSTM with attention mechanism to get sentiment word vector.With the method of sharing parameters,the model was pre-training with English corpus.Finally,the sentiment of the text was classified by stacked Bi-LSTM with attention mechanism,with input of sentiment word vector.Experiments show that the model can effectively improve the performance of Vietnamese sentiment analysis under small language materials.

关 键 词:Sentiment analysis Long short-term memory Attention mechanism Sentiment word vector Transfer learning 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象