检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘光品 刘云鹏[1] 王仁芳[1] LIU Guang-pin;LIU Yun-peng;WANG Ren-fang(Zhejiang Wanli University,Ningbo Zhejiang 315100)
机构地区:[1]浙江万里学院,浙江宁波315100
出 处:《浙江万里学院学报》2020年第6期97-103,共7页Journal of Zhejiang Wanli University
基 金:浙江省自然科学基金(LY17F0000);宁波市科技计划项目(2019C50008)。
摘 要:在生产车间内,生产情况较为复杂,在生产过程中工人未按要求佩戴安全帽是造成安全事故的原因之一。目前基于室内场景的安全帽佩戴检测研究还较少,现提出一种改进的RetinaNet网络检测模型,用于生产车间内员工安全帽佩戴检测。首先,该模型通过在ResNet-50上采用卷积块注意力模块,在其中的通道注意模块的MLP网络中添加dropout机制,增强模型的泛化性;然后,采用K-MeansⅡ维度聚类算法找出锚点的合适尺度来进行目标的检测。实验结果显示,改进的模型在不同实验条件下,安全帽佩戴检测精度达到98.71%,检测速率达到15.6f/s,能满足生产车间的实际需求。In the production workshop,the production situation is complicated,and the failure of workers to wear safety helmets as required in the production process is one of the causes of safety accidents.At present,there are few researches on helmet wearing detection based on indoor scenes.An improved RetinaNet network detection model is proposed for helmet wearing detection of employees in production workshops.Firstly,the model adopts convolution block attention module in ResNet-50,and adds dropout mechanism in MLP network of channel attention module to enhance the generalization of the model;Then,K-means dimension clustering algorithm is used to find the appropriate scale of anchor point for target detection.The experimental results show that,the accuracy of helmet wearing detection reaches 98.71%and the detection rate reaches 15.6f/s under different experimental conditions,which can meet the actual needs of the production workshop.
关 键 词:RetinaNet 卷积块注意力 K-MeansⅡ聚类 安全帽佩戴检测
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222