基于域适应支持向量回归的磨机负荷软测量  被引量:1

Soft Sensor of Ball Mill Load Parameters Based on Domain Adaptation Support Vector Regression

在线阅读下载全文

作  者:支恩玮 任密蜂 程兰 阎高伟 ZHI En-wei;REN Mi-feng;CHENG Lan;YAN Gao-wei(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China)

机构地区:[1]太原理工大学电气与动力工程学院,山西太原030024

出  处:《控制工程》2020年第11期1867-1872,共6页Control Engineering of China

基  金:国家自然科学基金项目(61973226);山西省科技重大专项(20181102017);山西省重点研发计划项目(201903D121143)。

摘  要:在工况改变时,湿式球磨机的实时数据和建模数据分布不一致,不满足机器学习的数据同分布假设,采用传统软测量方法将导致软测量模型失准和性能恶化等问题。为此,引入域适应思想,提出一种基于域适应支持向量回归的软测量模型,实现多工况下湿式球磨机负荷参数的准确测量。首先对多工况数据进行预处理并提取频谱特征,然后利用目标域中少量带标签样本数据所蕴含的特征信息和知识结构,提升源域数据构建模型对目标域数据的适应程度,最后对磨机负荷参数进行回归预测。实验结果表明,该软测量方法显著优于现有方法,适用于多工况下的软测量建模。When the working condition of wet ball mill is changed,the distributions of real time data and modeling data are inconsistent,and the independent and identically distributed assumption of machine learning would not be satisfied.In this case,the soft sensor model,obtained by the traditional soft sensor method,may be inaccuracy,which leads to the deterioration of the model performance.Therefore,by introducing the domain adaptation theory,this paper proposes a soft sensor model based on domain adaptive support vector regression strategy to achieve the precise measurement of wet ball mill load parameters under multiple working conditions.Firstly,data in multiple working conditions is preprocessed and spectrum features are extracted.For then,the feature information and knowledge structure of few labeled samples in the target domain data are used to improve the adaptation for target data of model constructed by source domain data.Finally,the mill load parameters are predicted by the regression model.The experimental results show that the proposed soft sensor method is significantly better than the existing method,and the proposed method is suitable for soft sensor modeling under the situation of multi working condition.

关 键 词:多工况 域适应 支持向量回归 湿式球磨机负荷参数 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象