检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈优良[1] 肖钢 胡敏 黄劲松 CHEN Youliang;XIAO Gang;HU Min;HUANG Jinsong(School of Architectural and Surveying&Mapping Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China;Zhejiang Intellectual Spectrum Engineering Technology Co.,Ltd.,Zhejiang 313000,China)
机构地区:[1]江西理工大学建筑与测绘工程学院,江西赣州341000 [2]浙江智谱工程技术有限公司,浙江湖州313000
出 处:《测绘科学》2020年第11期20-27,40,共9页Science of Surveying and Mapping
基 金:国家自然科学基金项目(41261093);江西省教育厅科技项目(GJJ170522)。
摘 要:针对使用传统极限学习机实现大坝变形预测中,因影响因子复杂导致隐藏层个数难以确定的问题,该文提出一种基于极限学习机与弹性网络支持下的大坝变形预测模型。采用极限学习机算法,将大坝变形影响因子由原本的空间映射到极限学习机的特征空间,建立影响因子与变形结果之间的非线性联系,同时将非线性模型转换成一个线性模式求解问题,并使用弹性网络求解该模型。对比基于极限学习机回归与最小二乘回归算法的实验表明:弹性网络拥有更好的稳定性,改善了极限学习机难以处理的过拟合现象,减弱了因训练集样本不同造成的预测误差大的影响,只需任意设置足够数量的隐含层神经元个数就能得到可靠的预测结果,简化了基于极限学习机的大坝变形预测面临的隐含层神经元个数取舍问题。In order to realize the dam deformation prediction using the traditional extreme learning machine,the dam deformation prediction model based on the extreme learning machine and the elastic network is proposed because the number of hidden layers is difficult to determine due to the complexity of the influence factors.Using the extreme learning machine algorithm,the dam deformation influence factor is mapped from the original space to the feature space of the extreme learning machine,and the nonlinear relationship between the influence factor and the deformation result is established,and the nonlinear model is transformed into a linear mode solving problem.And use the elastic network to solve the model.Experiments based on extreme learning machine regression and least squares regression algorithm show that the elastic network has better stability,improves the over-fitting phenomenon faced by the extreme learning machine,and weakens the prediction error caused by different training set samples.The effect is that only a sufficient number of hidden layer neurons can be arbitrarily set to obtain reliable prediction results,which simplifies the problem of the number of hidden layer neurons faced by the dam deformation prediction based on the extreme learning machine.
分 类 号:TV698.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.11