重力驱动自然对流-相变耦合散热系统数值模拟  被引量:5

Numerical Simulation of Natural Convection and Phase Transition Coupling Heat Sink Driven by Gravity

在线阅读下载全文

作  者:陈浩 康伟 石秋雨 李强[1] CHEN Hao;KANG Wei;SHI Qiu-yu;LI Qiang(MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science & Technology, Nanjing 210094, China;State Key Laboratory of Advanced Power Transmission Technology, Global Energy Interconnection Research Institute, Beijing 102211, China)

机构地区:[1]南京理工大学能源与动力工程学院电子设备热控制工信部重点实验室,南京210094 [2]全球能源互联网研究院有限公司先进输电技术国家重点实验室,北京102211

出  处:《科学技术与工程》2020年第32期13188-13196,共9页Science Technology and Engineering

基  金:国家自然科学基金(51225602)。

摘  要:为实现大功率电力设备在自然对流下的有效散热,设计了重力驱动的自然对流-相变耦合散热系统。冷凝板表面安装的翅片增大了系统散热面积。系统内部具有两相回路,通过工质在回路中的相变换热,实现热量的有效传递。通过建立重力驱动自然对流-相变耦合散热系统的流动与传热模型,模拟研究系统内部的两相流动与传热传质过程。模拟结果表明,系统在热量输入后能够迅速启动,充液率为40%且总功率为3600 W时,系统最高温度为350.24 K。可见该系统能够对大功率电力设备进行及时有效地散热。A new natural convection and phase transition coupling heat sink driven by gravity was proposed for the effective heat dissipation of high-power electrical equipment under natural convection.Fins installed on the condensation substrate increased the heat dissipation area of heat sink.The heat could be transferred from evaporation substrate to condensation substrate by phase transition of working medium in two-phase fluid loop.A flow and heat transfer model of the heat sink was established.And two-phase flow,heat transfer and mass transfer process in the heat sink were simulated.Simulation results indicate that the heat sink can start quickly.The maximum temperature is 350.24 K while the filling ratio is 40%and the total heating power is 3600 W.It is concluded that the heat generated by high-power electrical equipment can be dissipated effectively through the heat sink.

关 键 词:自然对流 电力设备 两相流 传热 

分 类 号:TK121[动力工程及工程热物理—工程热物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象