检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄超 廖玉芳 蒋元华[1,3] 彭嘉栋 HUANG Chao;LIAO Yu-fang;JIANG Yuan-hua;PENG Jia-dong(Hunan Climate Center,Changsha 410008,China;Institute of Meteorological Sciences of Hunan Province,Changsha 410008,China;Hunan Key Laboratory of Meteorological Disaster Prevention and Reduction,Changsha 410008,China)
机构地区:[1]湖南省气候中心,长沙410008 [2]湖南省气象科学研究所,长沙410008 [3]气象防灾减灾湖南省重点实验室,长沙410008
出 处:《湖北农业科学》2020年第21期177-183,共7页Hubei Agricultural Sciences
基 金:湖南省科技重大专项(2018NK1030)。
摘 要:采用分类与回归树(CART)和卡方自动交叉检验(CHAID)两种决策树算法,基于不同物候期气象指标对2010—2016年湖南省24个油茶(Camellia oleifera Abel.)测产点的油茶产量进行分析。结果表明,两种决策树算法对于历史产量数据模拟的平均相对误差分别达8.80%、14.30%,趋势准确率分别为97.40%、92.20%;开花期的0℃以上积温和平均最高气温对油茶产量影响最大,在果实第一次膨大期、油脂转化和积累高峰期,气温日较差、平均最低气温和高温日数最重要。对提升油茶产业效益极具现实意义。In this study,two kinds of decision tree algorithms,CART(Classification and regression tree)and CHAID(Chi-Square au⁃tomatic interaction detection)were adopted to simulate the yield of Camellia oleifera of Hunan province based on meteorological fac⁃tors of different phenological phase over from 2010 to 2016.The results showed that the average relative errors of CART and CHAID al⁃gorithms were 8.80%and 14.30%respectively,and the trend accuracy were 97.40%and 92.20%respectively.The accumulated tem⁃perature above 0℃and the average maximum temperature at flowering stage had the greatest influence on Camellia oleifera yield.In the first fruit expansion period and the peak of oil transformation and accumulation,the diurnal temperature range,the mean minimum temperature and high temperature days were the most important.It is of great significance for improving the efficiency of Camellia oleifera industry chain.
关 键 词:油茶(Camellia oleifera Abel.) 气象因子 决策树算法
分 类 号:S794.4[农业科学—林木遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80