检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑嘉伟 刘其洪[1] 李伟光[1] 赵学智[1] 李国臣[2] Zheng Jiawei;Liu Qihong;Li Weiguang;Zhao Xuezhi;Li Guochen(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641,China;Dongguan Polytechnic,Dongguan 523808,China)
机构地区:[1]华南理工大学机械与汽车工程学院,广东广州510641 [2]东莞职业技术学院,广东东莞523808
出 处:《机械传动》2020年第12期146-152,共7页Journal of Mechanical Transmission
基 金:国家高技术研究发展计划(863计划)(2015AA043005);广东省重点领域研发计划项目(2019B090918003);国家自然科学基金(51875205)。
摘 要:针对柔性薄壁轴承故障特征频率提取的问题,提出了主成分分析(PCA)与多点最优调整的最小熵解卷积(MOMEDA)相结合的特征频率提取算法。算法中用PCA对原始信号作降噪处理,获得重构信号,利用多点峭度(MKurt)提取重构信号中的周期性冲击信号的周期,对理论周期进行修正,进而得到精确的解卷积周期,通过MOMEDA对重构信号进行增强,突出其周期性冲击,可以更有效地提取特征频率。将此方法应用到柔性薄壁轴承的故障特征频率提取上,并与最大相关峭度解卷积(MCKD)算法作对比。结果表明,该方法可将轴承故障冲击与因轴承长短轴交替而产生的周期性冲击分离,消除这种正常的周期性冲击的干扰,有效提取信号中的故障特征频率,效果优于最大相关峭度解卷积算法。Aiming at the problem of extracting characteristic frequency of flexible thin-walled bearings,a feature frequency extraction algorithm combining principal component analysis(PCA)and multi-point optimally adjusted minimum entropy deconvolution(MOMEDA)is proposed.In the algorithm,PC A is used to perform noise reduction processing on the original signal to obtain a reconstructed signal.The multipoint kurtosis(MKurt)is used to extract the period of the periodic shock signal in the reconstructed signal,and the theoretical period is corrected to obtain an accurate deconvolution period,enhance the reconstructed signal through MOMEDA,highlight its periodic impact,and extract the characteristic frequency more effectively.This method is applied to the fault feature frequency extraction of flexible thin-walled bearings,and compared with the maximum correlation kurtosis deconvolution(MCKD)algorithm.The results show that this method can separate bearing fault shocks from periodic shocks caused by the alternation of the bearing’s long and short axes,eliminate the interference of such normal periodic shocks,and effectively extract the fault characteristic frequency in the signal.The effect is better than the maximum correlation kurtosis deconvolution algorithm.
关 键 词:主成分分析 多点最优调整的最小熵解卷积 多点峭度 特征频率提取
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.114