Multi-window dilation-and-modulation frames on the half real line  

在线阅读下载全文

作  者:Yunzhang Li Wei Zhang 

机构地区:[1]College of Applied Sciences,Beijing University of Technology,Beijing 100124,China [2]School of Mathematics and Information Sciences,Henan University of Economics and Law,Zhengzhou 450046,China

出  处:《Science China Mathematics》2020年第12期2423-2438,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11271037)。

摘  要:Wavelet and Gabor systems are based on translation-and-dilation and translation-and-modulation operators,respectively,and have been studied extensively.However,dilation-and-modulation systems cannot be derived from wavelet or Gabor systems.This study aims to investigate a class of dilation-and-modulation systems in the causal signal space L^2(R+).L^2(R+)can be identified as a subspace of L^2(R),which consists of all L^2(R)-functions supported on R+but not closed under the Fourier transform.Therefore,the Fourier transform method does not work in L^2(R+).Herein,we introduce the notion ofΘa-transform in L^2(R+)and characterize the dilation-and-modulation frames and dual frames in L^2(R+)using theΘa-transform;and present an explicit expression of all duals with the same structure for a general dilation-and-modulation frame for L^2(R+).Furthermore,it has been proven that an arbitrary frame of this form is always nonredundant whenever the number of the generators is 1 and is always redundant whenever the number is greater than 1.Finally,some examples are provided to illustrate the generality of our results.

关 键 词:FRAME wavelet frame Gabor frame dilation-and-modulation frame multi-window dilation-and-modulation frame 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象