Sequential fusion estimation for multisensor systems with non-Gaussian noises  被引量:2

在线阅读下载全文

作  者:Liping YAN Chenying DI Q.M.Jonathan WU Yuanqing XIA 

机构地区:[1]Key Laboratory of Intelligent Control and Decision of Complex Systems,School of Automation,Beijing Institute of Technology,Beijing 100081,China [2]Department of Electrical and Computer Engineering,University of Windsor,Windsor N9B3P4,Canada

出  处:《Science China(Information Sciences)》2020年第12期149-161,共13页中国科学(信息科学)(英文版)

基  金:supported by Beijing Natural Science Foundation(Grant No.4202071)。

摘  要:The sequential fusion estimation for multisensor systems disturbed by non-Gaussian but heavytailed noises is studied in this paper.Based on multivariate t-distribution and the approximate t-filter,the sequential fusion algorithm is presented.The performance of the proposed algorithm is analyzed and compared with the t-filter-based centralized batch fusion and the Gaussian Kalman filter-based optimal centralized fusion.Theoretical analysis and exhaustive experimental analysis show that the proposed algorithm is effective.As the generalization of the classical Gaussian Kalman filter-based optimal sequential fusion algorithm,the presented algorithm is shown to be superior to the Gaussian Kalman filter-based optimal centralized batch fusion and the optimal sequential fusion in estimation of dynamic systems with non-Gaussian noises.

关 键 词:state estimation sequential fusion non-Gaussian disturbance heavy-tailed noise multivariate t-distribution 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象