仿拓扑群嵌入性质的一点注记  

A note on properties of embedding paratopological groups into topological products

在线阅读下载全文

作  者:郭伟业 GUO Weiye(School of Mathematics and Computational Science,Wuyi University,Jiangmen,Guangdong 529020,China)

机构地区:[1]五邑大学数学与计算科学学院,广东江门529020

出  处:《闽南师范大学学报(自然科学版)》2020年第4期9-14,共6页Journal of Minnan Normal University:Natural Science

基  金:国家自然科学基金青年科学基金资助项目(11601393,11861018)。

摘  要:对特征小于等于κ以及权势小于等于κ的仿拓扑群乘积空间的子群进行刻画,得到如下结论:1)设仿拓扑群G满足T2(正则)分离公理,则G拓扑同构于一族满足特征小于等于κ且满足T2(正则)分离公理仿拓扑群乘积空间的子群当且仅当G是κ—balanced且Hs(G)≤(κIr(G)≤κ);2)设仿拓扑群G满足T2(正则)分离公理,则G拓扑同构于一族满足权势小于等于κ且满足T2(正则)分离公理仿拓扑群乘积空间的子群当且仅当G是完全κ—narrow且Hs(G)≤(κIr(G)≤κ).By discussing a subgroup of topological product of paratopological groups satisfying character or weight not larger thanκ,we obtain the following results:1)Let G be a T2(regular)paratopological group,then G can be topological embedded as a subgroup into a topological product of T2(regular)paratopological groups of character less than or equal toκif and only if G is κ—balanced and Hs(G)≤κ(Ir(G)≤κ);2)Let G be a T2(regular)paratopological group,then G can be topological embedded as a subgroup into a topological product of T2(regular)paratopological groups of weight less than or equal toκif and only if G is totally κ—narrow and Hs(G)≤κ(Ir(G)≤κ).

关 键 词:仿拓扑群 Hausdorff数 正则数 

分 类 号:O189.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象