检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁发浒[1] 刘丽[1] 巴瑞琪 陈江源 黄丽霞[1] 朱书秀[1] YUAN Fahu;LIU Li;BA Ruiqi;CHEN Jiangyuan;HUANG Lixia;ZHU Shuxiu(School of Medicine,Jianghan University,Wuhan 430056,Hubei,China)
出 处:《江汉大学学报(自然科学版)》2020年第6期23-32,共10页Journal of Jianghan University:Natural Science Edition
基 金:国家自然科学基金资助项目(81674060)。
摘 要:目的探寻金叶败毒颗粒治疗新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)的药理作用机制。方法通过中药系统药理学数据库与分析平台(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP)、中药分子机制的生物信息学分析工具(Bioin⁃formatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine,BATMAN-TCM)检索筛选金叶败毒颗粒中金银花、蒲公英、鱼腥草、大青叶的化学成分和作用靶点。查询OMIM(Online Mendelian Inheritance in Man)、GeneCards数据库获得疾病相关靶点基因,进而运用Cytoscape软件构建药物活性分子-靶点基因作用网络,通过R语言包clusterProfiler进行基因本体(gene ontology,GO)功能注释和基于京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路富集分析,预测金叶败毒颗粒对COVID-19的作用机制。结果共筛选获得药物活性分子31个。靶点基因110个,主要包含PTGS2、AR、ESR1、PPARG、PRSS1、NOS2、NR3C2等核心靶点。富集分析得到GO条目2138项(P<0.05),KEGG信号通路134条(P<0.05),主要富集的通路有AGE-RAGE信号通路、动脉粥样硬化、TNF-α信号通路、甲型流感等。结论金叶败毒颗粒的活性化合物能作用于TNF信号等核心炎症通路,从而对COVID-19起到抗氧化损伤、抗炎作用。Objective To explore the pharmacological mechanism of Jinyebaidu Particles in the treatment of coronavirus disease 2019(COVID-19).Methods Through searching Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP)and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine(BATMAN-TCM)to select the chemical constituents and action targets of Lonicerae Japonicae Flos,Houttuyniae Herba,Isatidis Folium,Taraxacum mongolicum Hand.-Mazz in Jinyebaidu Particles.The disease-related target genes were obtained by consulting Online Mendelian Inheritance in Man(OMIM)and GeneCards database,and then the drug-active molecules-target gene action network was constructed using Cytoscape software.Gene ontology(GO)functional annotation and enrichment analysis based on Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways were conducted by the R package cluster Profiler to predict the mechanism of action of Jinyebaidu Particles on COVID-19.Results A total of 31 active molecules and 110 target genes were screened,mainly including PTGS2,AR,ESR1,PPARG,PRSS1,NOS2,NR3C2 and other core targets.Enrichment analysis revealed 2138 GO items(P<0.05)and 134 KEGG signaling pathways(P<0.05).The main enrichment pathways included AGE-RAGE signaling pathway,atherosclerosis,TNF-αsignaling pathway,Influenza A pathway.Conclusion The active compounds of Jinyebaidu Particles can act on core inflammatory pathways such as TNF signaling,thus exerting antioxidant damage and anti-inflammatory effects on COVID-19.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.212.19