移动目标同现模式挖掘算法的研究  

Research on Mining Algorithm of Mixed-Drove Co-occurrence Pattern of Moving Targets

在线阅读下载全文

作  者:周濛 朱保平[1] ZHOU Meng;ZHU Baoping(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094)

机构地区:[1]南京理工大学计算机科学与工程学院,南京210094

出  处:《计算机与数字工程》2020年第11期2680-2685,2696,共7页Computer & Digital Engineering

摘  要:为改善传统同现模式挖掘算法基于内存计算的不足以及挖掘效率不高的问题,论文基于现有的同现模式挖掘算法,构建基于行人移动目标的粗细粒度结合的混合模型CFCMDCOP Graph,该混合模型有效保存了移动目标间的引发关系,以及对应实例间的时空关系,解决数据的存储问题。同时,论文给出相应的挖掘算法CFCMDCOP Graph Miner,可以提前对冗余模式进行剪枝。实验表明,该算法解决了数据存储问题,并提高了挖掘效率。In order to improve the deficiency of traditional co-occurrence pattern mining algorithm based on memory comput⁃ing and the inefficiency of mining,this paper builds a hybrid model CFCMDCOP Graph based on the combination of coarse-grained and fine-grained pedestrian moving objects.The hybrid model effectively preserves the triggering relationship between moving ob⁃jects,as well as the spatio-temporal relationship between corresponding instances,and solves the issues of data storage.At the same time,this paper presents the corresponding mining algorithm CFCMDCOP Graph Miner,which can prune redundant patterns in advance.Experiments show that the algorithm solves the problem of data storage and improves the efficiency of mining.

关 键 词:数据挖掘 移动目标 同现模式 引发率 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象