基于生命体征监测与室内定位技术的消防员协助系统  被引量:4

Aid system for firefighter based on vital signal detection and indoor location system

在线阅读下载全文

作  者:王圣哲 王博[1] 高鸣远 罗亮[1] Wang Shengzhe;Wang Bo;Gao Mingyuan;Luo Liang(School of Electro-Optical Engineering,Changchun University of Science and Technology,Changchun 130000,China)

机构地区:[1]长春理工大学光电工程学院,吉林长春130000

出  处:《电子技术应用》2020年第12期72-77,共6页Application of Electronic Technique

摘  要:现代科技发展带来高层建筑和复杂建筑结构增多,导致消防员很容易在火场内受到生命危险。针对消防人员进入复杂火场后的生命体征状态及室内定位问题,提出了一套完整的协助系统。提出使用LSTM神经网络预测消防人员的动作姿态,使用光电传感器监测消防员的心率血氧以及周边气体环境。同时,提出了一种基于超宽带通信定位与高精度惯性元件导航进行数据融合的室内消防员定位手段。最后,终端通过LoRa-170M无线系统上传给移动监测平台,利用LabVIEW软件完成了监测上位机,并通过实验验证了其可靠性及稳定程度。Since the development of modern technology, the number of high buildings and complex structures keeps ascending,which leads to the vital hazard of firefighters. This paper proposes a complete aid system to duel with the issues on vital signal detection and indoor location for the firefighters. In this paper, LSTM Neural Network is employed to classified the attitude and movement of the firefighter, and particular photoelectric sensors are used to detect the heard rate, blood oxygen saturation and the gas surrounded. At the meantime, this paper proposes a indoor location system based on the data fusion of the Ultra-WideBand location and the inertial navigation. Finally data above are transmitted via LoRa-170 M Network to the monitoring platform which is built up with the help of LabVIEW. At the end, experiments are designed to verify the ability and stability of the system.

关 键 词:消防救援 生命体征监测 室内定位 LSTM神经网络 超宽带技术 

分 类 号:TN98[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象