检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪晓华[1] NI Xiaohua(Second Affiliated Hospital of Nanjing Medical University,Jiangsu 210011,China)
机构地区:[1]江苏省南京医科大学第二附属医院信息科,江苏210011
出 处:《中国医疗设备》2020年第S01期172-175,180,共5页China Medical Devices
基 金:江苏省医院管理创新研究立项课题(编号:JSYGY-3-2018-121)。
摘 要:目的为了提高院内感染诊疗的自动化程度和正确性,降低人工检测判定的代价。方法利用LSTM对电子病历文本中的院感症状短语进行识别获取,结合院感其它结构化字段数据组成62个院感特征作为深度神经网络模型的输入。采用2382个匿名院内感染患者的特征数据进行模型训练、优化及保存。最后以医生确诊结果为标准,对随机抽取430个检验出病原菌的患者进行院感测试分类验证。结果院感相关症状短语识别F值高于92%,AUC高于85%。院内感染诊疗决策支持系统正确率达98.4%。结论院内感染诊疗决策支持系统可以智能辅助医生更快更准确地对院内感染患者进行诊断。Objective To improve the performance and automation of hospital infection diagnosis and treatment,and reduce the cost of manual detection to determine hospital infection.Methods LSTM was used to recognize and acquire the phrases of infection symptoms in the electronic medical record text,and combined with other structured data to construct 62 hospital sense features.Then,the deep neural network was used to train the model data of 2382 anonymous nosocomial infection patients,and 430 test patients were tested based on the doctor's diagnosis results.Results The F value of phrase recognition related to hospital sense was higher than 92%,and the AUC was higher than 85%.The accuracy rate of decision support system for nosocomial infection diagnosis and treatment reached 98.4%.Conclusion Nosocomial infection diagnosis and treatment decision support system can intelligently assist doctors to diagnose nosocomial infection patients more quickly and accurately.
关 键 词:深度神经网络 长短期记忆网络 院内感染 症状短语
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.193.179