基于无模型预估算法的电工钢边部减薄滞后控制系统  被引量:1

Edge drop time-delay control system for electrical steel based on model-free adaptive algorithm

在线阅读下载全文

作  者:张岩 吴鲲魁[2] 孙瑞琪 刘洪宇 ZHANG Yan;WU Kun-kui;SUN Rui-qi;LIU Hong-yu(Future Iron and Steel Research Institute,Beijing Research Institute of Ansteel Co.,Ltd.,Beijing 102200,China;School of Chemical Engineering,University of Science and Technology LiaoNing,Anshan 114001,China)

机构地区:[1]鞍钢集团北京研究院有限公司未来钢铁研究院,北京102200 [2]辽宁科技大学化学工程学院,辽宁鞍山114001

出  处:《冶金自动化》2020年第6期70-76,共7页Metallurgical Industry Automation

基  金:国家重点研发计划资助项目(2017YFB0304103)。

摘  要:边部减薄是电工钢控制的重要参数,直接影响着带钢产品的质量和成材率。边部减薄的闭环控制过程存在严重的滞后问题,解决系统滞后问题对于控制精度的提高具有重要意义。以鞍钢硅钢1500 mm冷连轧机生产线为基础,分析了边部减薄滞后问题产生的原因,采用反馈控制和前馈边部减薄控制策略,并采用无模型预估算法对含有滞后环节的闭环系统进行有效控制。应用结果表明,无模型预估算法对于控制模型精度具有良好的控制品质,解决了由于系统大滞后易产生的不稳定问题,无需对象模型且响应速度快,极大地提高了电工钢产品的边部减薄控制精度。The most important parameter of electrical steel control is the edge drop,which directly affects both quality and yield of the strip products.There is a serious time-delay problem in the closedloop control process of edge drop.It is of great significance to solve the problem of system time-delay for improving the control accuracy.On the basis of Ansteel 1500 mm cold continuous rolling mill silicon steel production line,the causes of the time-delay on the edge drop were analyzed,and the automatic control strategy was established including the feedback control and feedforward edge drop control.Model-free adaptive algorithm was used to control the closed-loop system with time-delay.Application results show that the model-free adaptive algorithm has good control quality for the control model accuracy,effectively solve the instability problem easily caused by the large time-delay of the system,need no object model,have fast response speed,and greatly improve the edge drop control precision of electrical steel products.

关 键 词:电工钢 边部减薄 时间滞后 无模型预估控制 

分 类 号:TG333[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象