检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张虎[1] 周晶晶 高海慧 王鑫 ZHANG Hu;ZHOU Jing-jing;GAO Hai-hui;WANG Xin(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China)
机构地区:[1]山西大学计算机与信息技术学院,太原030006
出 处:《计算机科学》2020年第12期119-124,共6页Computer Science
基 金:国家社会科学基金(18BYY074);国家自然科学基金(61936012,61806117);山西省高等学校科技创新项目(201802012)。
摘 要:随着神经网络技术的快速发展,面向复杂网络数据的网络表示学习方法受到越来越多的关注,其旨在学习网络中节点的低维度潜在表示,并将学习到的特征表示有效应用于基于图的各种分析任务。典型的浅层随机游走网络表示学习模型主要基于节点结构相似和节点内容相似,不能同时有效捕获节点结构和内容的相似信息,因此在结构和内容等价混合的网络数据上表现较差。为此,探索了节点结构相似和节点内容相似的融合特征,提出了一种基于无监督浅层神经网络联合学习的表示方法SN2vec。实验分别利用节点结构和内容等价混合的Brazilian air-traffic,American air-traffic,Wikipedia数据集在多标签分类和降维可视化任务上进行验证。结果显示,SN2vec在多标签分类任务中的Micro-F1值优于现有的浅层随机游走网络表示方法,并且可以较好地学习到潜在结构表示一致的节点。With the rapid development of neural network technology,the network representation learning method for complex network has got more and more attention.It aims to learn the low-dimensional potential representation of nodes in the network and to apply the learned characteristic representation effectively to various analysis tasks for graph data.The typical shallow random walk network representation model is mainly based on two kinds of characteristic representation methods,which are the node structure similarity and node content similarity.However,the methods can’t effectively capture similar information of node structure and content at the same time,and perform poorly on the network data with the equivalent structure and content.To this end,this paper explores the fusion characteristics of node structure and node content,and proposes a representation method called SN2vec,which is based on joint learning of unsupervised shallow neural networks.Further,in order to validate the effectiveness of the proposed model,this paper respectively conduct the multi-label classification and down-dimensional visualization tasks in Brazilian air-traffic,American air-traffic,and Wikipedia datasets.The results show that the Micro-F1 of using SN2vec in multi-label classification task is better than the existing shallow random walk network representation methods,and SN2vec can also learn better potential structural representation of consistent nodes.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.242.51