基于非下采样轮廓波变换的离线签名识别  被引量:2

Off-line signature recognition based on non-downsampled contourlet transform

在线阅读下载全文

作  者:莫龙飞 麦合甫热提 朱亚俐[1] 吾尔尼沙·买买提 库尔班·吾布力[1] MO Long-fei;Mahpirat;ZHU Ya-li;Hornisa Mamat;Kurban Ubul(College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China;Academic Affairs Department,Xinjiang University,Urumqi 830046,China)

机构地区:[1]新疆大学信息科学与工程学院,新疆乌鲁木齐830046 [2]新疆大学教务处,新疆乌鲁木齐830046

出  处:《计算机工程与设计》2020年第12期3472-3478,共7页Computer Engineering and Design

基  金:国家自然科学基金项目(61862061、61563052、61163028);新疆大学2018年度博士启动基金项目(62008040)。

摘  要:为提高手写签名的识别率,提出一种基于NSCT子带纹理特征融合的签名识别方法。对签名图像进行预处理(包括灰度化、平滑、二值化、归一化、细化等),对签名图像进行非下采样Contourlet变换,对变换产生的子带分别提取多级区域局部二值模式和灰度共生矩阵特征,通过融合形成新特征。数据库包含维吾尔文和柯尔克孜文两类文种,每个文种100人(20个样本/人),共4000个签名样本进行实验,实验结果表明,该方法能更准确地提取签名图像多尺度、多方向的纹理特征,可有效提高识别率。To improve the recognition rate of handwritten signature,a signature recognition method based on NSCT sub-band texture feature fusion was proposed.The signature image was preprocessed(including grayscale,smoothing,binarization,normalization,refinement,etc.).The non-subsampled Contourlet transform was performed on the signature image,and the multi-level regional local binary pattern and the gray level co-occurrence matrix feature were extracted respectively for the sub-bands generated by transformation,and new features were formed by fusion.The database contained Uyghur and Kirgiz languages,each of which had 100 people(20 samples/person)and a total of 4000 signature samples.Experimental results show that the proposed method can extract signature images more accurately.Multi-directional texture features can effectively improve the re-cognition rate.

关 键 词:签名识别 非下采样CONTOURLET变换 特征融合 多级区域局部二值模式 灰度共生矩阵 支持向量机 BP神经网络 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象