检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王化玲 刘志远 赵欣洋 晁战云 刘小峰[4] WANG Hualing;LIU Zhiyuan;ZHAO Xinyang;CHAO Zhanyun;LIU Xiaofeng(State Grid Intelligent Technology Co.,Ltd.,Jinan 250101,P.R.China;Overhaul Company,State Grid Ningxia Electric Power Co.,Ltd.,Yinchuan 750011,P.R.China;Huatong Technology Co.,Ltd.,Chongqing 400112,P.R.China;State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044,P.R.China)
机构地区:[1]国网智能科技股份有限公司,济南250101 [2]国网宁夏电力有限公司检修公司,银川750011 [3]华通科技有限公司,重庆400112 [4]重庆大学机械传动国家重点实验室,重庆400044
出 处:《重庆大学学报》2020年第12期33-40,共8页Journal of Chongqing University
基 金:国家自然科学基金资助项目(51675064,51975067)。
摘 要:针对故障状态下的滚动轴承振动信号非线性非平稳性强、噪声干扰大导致的故障敏感特征提取难的问题,在对轴承振动信号进行局域均值分解(local mean decomposition,LMD)的基础上,提出了一种基于故障敏感分量的特征提取与改进K近邻分类器(K-nearest neighbor classifier,KNNC)的故障状态辨识方法。该方法采用相关系数法对LMD分解出的振动分量进行故障敏感性的量化表征,然后对筛选出的信号分量进行时域/频域的特征提取,构建不同故障状态下的特征样本集。为加快故障状态识别速度,排除不良样本的影响,提出一种基于二分K均值聚类的改进KNNC算法,精简了大容量的训练样本,有效去除不良特征样本和干扰点。实验结果表明,以敏感分量特征作为输入的改进KNNC算法能够快速准确地识别轴承不同故障状态。To solve the problem of sensitive feature extraction from the non-stationary and nonlinear vibration signals of rolling bearing,local mean decomposition(LMD)was carried out.and the time/frequency domain features were extracted from the sensitive fault components quantified by the correlation coefficient method.Then,the feature sets of different faults states were established and used to train the state classifier.In order to achieve the higher accuracy of bearing fault states identification,an improved K-nearest neighbor classifier(KNNC)algorithm based on dichotomy K-means clustering was proposed,in which the big training samples were simplified,and the bad samples and interference points were effectively removed.Finally,the effectiveness of the method was verified through diagnostic analysis of experimental data of bearings.
关 键 词:局域均值分解 故障敏感分量 改进K近邻分类器 故障诊断
分 类 号:TH17[机械工程—机械制造及自动化] TH206
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33