检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王东城 徐扬欢[1] 段伯伟 汪永梅 刘宏民 WANG Dong-cheng;XU Yang-huan;DUAN Bo-wei;WANG Yong-mei;LIU Hong-min(National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,Yanshan University,Qinhuangdao 066004,Hebei,China;State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,Hebei,China)
机构地区:[1]燕山大学国家冷轧板带装备及工艺工程技术研究中心,河北秦皇岛066004 [2]燕山大学亚稳材料制备技术与科学国家重点实验室,河北秦皇岛066004
出 处:《钢铁》2020年第11期82-90,共9页Iron and Steel
基 金:河北省高端人才和“巨人计划”创新团队资助项目(2019)。
摘 要:边部线状缺陷是热轧带钢易发缺陷,不仅严重影响成材率,还可能对热轧下游工序生产过程造成影响。边部线状缺陷的影响因素复杂多变,建立精确的机理预报模型十分困难。为此,首先分析边部线状缺陷的主要影响因素;然后以智能方法为基础,分别建立了基于逻辑回归与神经网络的边部线状缺陷智能预报模型,并分析了2个模型的精度与泛化能力;最后,以神经网络智能预报模型为基础,对加热工艺参数进行优化,使缺陷发生率与封闭率均大幅降低。研究结果对提高热轧带钢表面质量具有实践意义,可推广应用于同类轧线。Edge seam defects are easy to occur in hot rolling strip,which not only seriously affect the yield,but also may affect the downstream process of hot rolling.It is very difficult to establish an accurate mechanism prediction model because of the complex and changeable factors affecting the edge seam defects.Therefore,first,the main influencing factors of edge seam defects are analyzed;then,based on intelligent methods,the intelligent prediction models of edge seam defects based on logical regression and neural network are established respectively,and the accuracy and generalization ability of the two models are analyzed;finally,based on the neural network intelligent prediction model,the heating process parameters are optimized,which makes the defect rate and defect closure rate are significantly reduced.The research results in this paper have practical significance for improving the surface quality of hot rolling strip,and can be applied to similar rolling lines.
关 键 词:数据驱动 热轧带钢 边部线状缺陷 智能预报 模型
分 类 号:TG335.11[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222