检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xianzhong ZENG Lingyu LIU Weiyuan XIE 曾宪忠;刘玲妤;谢伟圆(School of Mathematics and Computing Science,Hunan University of Science and Technology,Xiangtan 411201,China)
出 处:《Acta Mathematica Scientia》2020年第6期1961-1980,共20页数学物理学报(B辑英文版)
基 金:the Hunan Provincial Natural Science Foundation of China(2019JJ40079,2019JJ50160);the Scientific Research Fund of Hunan Provincial Education Department(16A071,19A179);the National Natural Science Foundation of China(11701169)。
摘 要:This paper deals with a Lotka-Volterra predator-prey model with a crowding term in the predator equation.We obtain a critical value λ1^D(Ω0),and demonstrate that the existence of the predator inΩ0 only depends on the relationship of the growth rateμof the predator and λ1^D(Ω0),not on the prey.Furthermore,whenμ<λ1^D(Ω0),we obtain the existence and uniqueness of its positive steady state solution,while whenμ≥λ1^D(Ω0),the predator and the prey cannot coexist inΩ0.Our results show that the coexistence of the prey and the predator is sensitive to the size of the crowding regionΩ0,which is different from that of the classical Lotka-Volterra predator-prey model.
关 键 词:Lotka-Volterra predator-prey model crowding term critical value COEXISTENCE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62