基于索引调制OFDM雷达通信共享信号压缩感知方法研究  被引量:10

A Compressed Sensing Method for Joint Radar and Communication System Based on OFDM-IM Signal

在线阅读下载全文

作  者:左家骏[1] 杨瑞娟[1] 李晓柏[1] 李东瑾 ZUO Jiajun;YANG Ruijuan;LI Xiaobai;LI Dongjin(Department of Early Warning Intelligence,Air Force Early Warning Academy,Wuhan 430019,China)

机构地区:[1]空军预警学院预警情报系,武汉430019

出  处:《电子与信息学报》2020年第12期2976-2983,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61271451)。

摘  要:针对在雷达通信一体化(RadCom)系统中正交频分复用(OFDM)共享信号通信速率不高、可靠性较差的问题,该文提出一种采用子载波索引调制(IM)的OFDM共享信号方案(OFDM-IM)以及对应的基于压缩感知(CS)的雷达信号处理算法。该方案在发射端采用IM调制增强OFDM信号通信质量,在雷达接收端采用CS技术获取目标的距离-速度2维超分辨图像,进一步采用快速分段重构、2次相参积累的方法降低算法的计算复杂度。仿真实验表明,相比于传统算法,该方法能显著提升对OFDM-IM共享信号的处理性能,并实现超低距离副瓣,是一种能够同时增强雷达与通信性能的一体化共享信号方案。Considering the problems of low communication rate and poor reliability of Orthogonal Frequency Division Multiplexing(OFDM)signals in joint Radar and Communication(RadCom)system,a subcarrier Index Modulation(IM)based OFDM RadCom signal scheme(OFDM-IM)and a corresponding radar signal processing algorithm based on Compressed Sensing(CS)are proposed in this paper.In the scheme,IM modulation is adopted at the transmitting end to enhance the communication quality of OFDM signal,CS technology is adopted at the radar receiving end to obtain the range-velocity 2-D super resolution image of radar targets,and the method of rapid piecewise reconstruction and second phase-coherent accumulation are further adopted to reduce the computational complexity of the algorithm.Simulation results show that,compared with the traditional algorithm,this method can significantly improve the processing performance of OFDM-IM RadCom signal and realize ultra-low side lobe in distance,which means the proposed scheme is able to enhance the performance of radar and communication in the same time.

关 键 词:雷达通信一体化 正交频分复用 子载波索引调制 压缩感知 

分 类 号:TN95[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象