Temporal consistency maintenance on multiprocessor platforms with instance skipping  

多处理器平台上考虑实例丢弃的数据时态一致性维护

在线阅读下载全文

作  者:BAI Tian LI Zhi-jie FAN Bo 白天;李志杰;范波(School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414000,China)

机构地区:[1]School of Information Science and Engineering,Hunan Institute of Science and Technology,Yueyang 414000,China

出  处:《Journal of Central South University》2020年第11期3364-3374,共11页中南大学学报(英文版)

基  金:Project(2020JJ4032)supported by the Hunan Provincial Natural Science Foundation of China。

摘  要:Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.维护实时数据的时态一致性对于信息物理融合系统来说非常重要。已有的研究工作大多针对单处理器平台来进行。基于(m,k)约束模型定义了多处理器平台上考虑实例丢弃的时态一致性维护问题,提出了一种解决该问题的方法SC-AD。SC-AD利用推导出的传感器事务集可调度的充分条件来确定各传感器事务参数m的初始值,然后据此进行多处理器事务分派。SC-AD合理地增加各处理器上已分派事务参数m的值以进一步降低实时数据的平均相对无效时间。实验结果表明,在不同的系统负载下,SC-AD在平均相对无效时间和平均有效率等性能指标上都要优于基线算法。

关 键 词:cyber-physical systems sensor transactions multiprocessor scheduling temporal consistency 

分 类 号:TP332[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象