基于工业CT图像的刚体切片厚度智能确定方法  被引量:3

An intelligent method for determining thickness of rigid slices based on industrial CT images

在线阅读下载全文

作  者:徐雪慧[1,2] XU Xuehui(College of Electronic Information Engineering,Wuhan Polytechnic,Wuhan 430074,China;College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China)

机构地区:[1]武汉职业技术学院电子信息工程学院,湖北武汉430074 [2]华中师范大学物理科学与技术学院,湖北武汉430079

出  处:《兵器材料科学与工程》2020年第6期129-132,共4页Ordnance Material Science and Engineering

摘  要:为准确测量刚体切片厚度,提出基于工业CT图像的智能确定方法。用自适应加权均值滤波法对CT图像预处理,去除图像中的噪声;基于Facet模型的图像边缘提取法,提取预处理图像的待测壁边缘像素;用内、外边缘完成边缘跟踪,将内、外边界点信息存储在结构数组中,获取每个边界点至外缘边界点最短距离,将最短距离相加后除以内缘边界点数,得出刚体厚度像素,将厚度像素与像素当量相乘,得出刚体厚度。结果表明:该方法能有效测量刚体厚度,误差率低于0.39%,去噪效果好,测量结果不受切片长度影响。In order to accurately measure the thickness of rigid slice,an intelligent determination method based on industrial C.T image was proposed.The adaptive weighted mean filter was used to preprocess the CT image to remove the noise in the image.The edge detection method based on Facet model was used to extract the edge pixels of the wall to be measured.The inner and outer edge tracking strategy was used to complete the cdge tracking,and the information of the inner and outer boundary points was stored in the structure array to obtain the shortest distance from each boundary point to the outer edge boundary point.The current thickness pixel of the rigid body was obtained by adding the shortest distance and dividing the inner boundary points,and the thickness of the rigid body was calculated by multiplying the thickness pixel with the pixel equivalent.The results show that the method can effectively measure the thickness of rigid body,the error rate is less than 0.39%,the denoising effect is good,and the measurement results are not affected by the change of slice length.

关 键 词:工业CT图像 刚体切片厚度 智能确定 边缘提取法 FACET模型 边缘像素 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象