城市轨道交通正线列车故障发生概率预测模型  被引量:3

Prediction Model of Train Fault Probability on Urban Rail Transit Main Line

在线阅读下载全文

作  者:王镇波 叶霞飞[1,2] 沈坚 施董燕[3] WANG Zhenbo;YE Xiafei;SHEN Jian;SHI Dongyan(Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University,Shanghai 201804,China;Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety,Tongji University,Shanghai 201804,China;Technology Center of Shanghai Shentong Metro Group Co.,Ltd.,Shanghai 201103,China)

机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海201804 [2]同济大学上海市轨道交通结构耐久与系统安全重点实验室,上海201804 [3]上海申通地铁集团有限公司技术中心,上海201103

出  处:《同济大学学报(自然科学版)》2020年第12期1751-1757,共7页Journal of Tongji University:Natural Science

摘  要:为了合理预测城市轨道交通列车在正线上发生故障的概率,首先通过定性分析得到列车编组数、累计走行公里、架修或大修经历为列车故障发生概率的主要影响因素。之后基于实际数据以每12万km为观测范围生成单列车在一定走行公里内故障发生次数的离散数据集,并根据数据呈现的分布特点选择泊松分布、零膨胀泊松分布及可能的函数形式构造3个备选模型。经过模型比选,最终提出基于泊松分布的城市轨道交通正线列车故障发生概率预测模型。结果表明:列车编组数的增加会提高列车故障发生概率;累计走行公里的增加会使列车故障发生概率先降低后回升,在列车投入运营后的第4个12万km阶段达到最低值,在第7个12万km阶段超过初始值。A qualitative analysis was made to investigate the major influencing factors in predicting the probability of the train fault happening on urban rail main line.Then,a discrete dataset was collected about a single train’s fault in running for 120000 km.Three alternative models were established on the basis of the data characteristics,Poisson distribution and zero-inflated Poisson distribution as well as the potential fault forms.According to the comparative study results,a Poisson distribution-based prediction model of train fault probability is finally proposed.Study results show that the train fault probability tends to increase with the increasing of train formation.It decreases first and then increases with the cumulative running kilometers,and the minimum train fault probability occurs in the fourth 120000 km period,but the initial value is exceeded in the seventh 120000 km period.

关 键 词:城市轨道交通 列车故障发生概率 列车累计走行公里 列车编组数 泊松分布 

分 类 号:U239.5[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象