检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丽萍 俞维 邱飞岳[3] WANG Li-ping;YU Wei;QIU Fei-yue(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;College of Business Administration,Zhejiang University of Technology,Hangzhou 310023,China;College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;Key Laboratory of Visual Media Intelligent Processing Technology of Zhejiang Province,Hangzhou 310023,China)
机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023 [2]浙江工业大学管理学院,杭州310023 [3]浙江工业大学教育科学与技术学院,杭州310023 [4]浙江省可视媒体智能处理技术研究重点实验室,杭州310023
出 处:《小型微型计算机系统》2020年第12期2536-2542,共7页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61472366,61379077)资助;浙江省自然科学基金项目(LY17F020022,LQ20F020014)资助;浙江省重点研发计划项目(2018C01080)资助。
摘 要:为平衡高维目标优化问题在进化过程中收敛性与多样性的冲突,本文提出基于两阶段分配策略的高维目标协同进化算法.首先,利用参考向量将种群进行分组,划分为若干个子种群,在进化前期,主要根据子种群中非支配解密度评估子种群优化难易程度;在进化后期,主要根据非支配解分布的广度评估子种群多样性,以此确定子种群进化潜力,为高进化潜力的子种群分配目标向量.然后,在整个目标空间内产生随机目标向量,防止其余个体的退化.本文将改进后算法与PICEAg在3、5、7、10、15维DTLZ1-7函数上进行性能对比实验.仿真实验结果表明,除DTLZ5测试问题外,改进后算法在收敛性及多样性上均优于原算法.To balance conflicts between convergence and diversity in the optimization of many-objective problems,this paper proposes a preference inspired many-objective co-evolutionary algorithm based on tw o-stage allocation strategy.Firstly,the reference vector is introduced to divide the population into several sub-populations.Secondly,in the early stage of evolution,the evolutionary potential is evaluated mainly by the density of non-dominant solutions of sub-population.And in the later stage of evolution,the evolutionary potential is evaluated mainly by the distribution of non-dominant solutions of sub-population.Then dynamically assign the preference vector to the sub-population with high evolution potential.Lastly,a part of random preference vectors are generated in the w hole objective space to prevent degradation of other individuals.In this paper,the improved algorithm PIECAg-PE is compared with the original algorithm PIECAg on the 3,5,7,10,15-objective DTLZ1-7 test problems.Simulation results show that,except for DTLZ5 test problems,the improved algorithm is superior to the original one in the convergence and diversity.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.34