检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王琰 周莉[1] 寇淑婷 WANG Yan;ZHOU Li;KOU Shuting(School of Information and Electrical Engineering,Ludong University,Yantai 264039,China)
机构地区:[1]鲁东大学信息与电气工程学院,山东烟台264039
出 处:《鲁东大学学报(自然科学版)》2021年第1期34-39,共6页Journal of Ludong University:Natural Science Edition
基 金:国家自然科学基金重大研究计划项目(91538201);国家自然科学基金青年科学基金项目(61304052)。
摘 要:证据理论在处理不确定信息方面具有建模方便、算法收敛速度快等优势,但也存在不能有效处理高冲突信息的不足。针对Jousselme证据距离函数不能准确描述证据概率分配值较分散的证据间的冲突度量问题,本文提出了随证据概率分布之间非包含度的增大冲突度量结果按比例增大的改进冲突度量函数,并将其应用于解决实际应用中的风险概率预测、目标识别问题,同时与已有其他冲突度量算法进行对比分析,验证了所提算法的有效性和广泛适用性。Evidence theory has the advantages of convenient modeling and fast algoritlim convergence in dealing with uncertain information,but it also has the disadvantage of not being able to deal effectively with high-conflict information.According to the problem that Jousselme evidence distance function can't accurately describe the conflict measure between pieces of evidence with more scattered probability distributions,an improved conflict measure function was proposed which increased the conflict measure proportionally with the increase of non-inclusive degree between evidence probability distributions,and applied to solving problems such as lisk probability prediction and target recognition in practical applications.The effectiveness and wide applicability of the proposed algorithm are verified in comparison with other existing conflict measure algorithms.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222