检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴育鑫 薛蕴菁[2] 段青[2] 孙斌[2] 刘柏韵 陈玉仙[2] WU Yuxin;XUE Yunjing;DUAN Qing;SUN Bin;LIU Baiyun;CHEN Yuxian(Graduate School, Fujian Medical University, Fuzhou 350000, China;Department of Imaging, Fujian Medical University Union Hospital, Fuzhou 350000, China;InferVision, Beijing 100025, China)
机构地区:[1]福建医科大学研究生院,福建福州350000 [2]福建医科大学附属协和医院影像科,福建福州350000 [3]北京推想科技有限公司,北京100025
出 处:《中国介入影像与治疗学》2020年第11期675-678,共4页Chinese Journal of Interventional Imaging and Therapy
摘 要:目的观察基于深度学习的计算机辅助诊断系统(DL-CAD)检出DR胸部正位片中骨折的效能及其对低年资放射科医师的辅助作用。方法①试验1:回顾性收集547例DR胸部正位片,其中361例存在胸部骨折(共983处骨折)、186例无胸部骨折,评估DL-CAD对骨折的预测性能。②试验2:随机选取试验1中的397例DR胸片,其中211例存在胸部骨折(共604处骨折)、186例无胸部骨折,记录并比较单独DL-CAD(1组)、单独低年资医师(2组)、DL-CAD辅助低年资医师(3组)、单独高年资医师(4组)的检出结果。结果①试验1:983处骨折中,DL-CAD识别出672处,正确识别641处,误诊31处,敏感度65.21%(641/983),F值为77.46%;361例骨折患者中,DL-CAD识别出320例,正确识别314例,误诊6例,敏感度86.98%(314/361),F值92.22%。②试验2:1、2、3、4组观察者检出骨折的敏感度分别为62.09%(375/604)、61.59%(372/604)、86.75%(524/604)和83.44%(504/604),F值分别为75.38%、74.62%、90.74%及89.84%;3、4组检测效能均高于1、2组(P均<0.001),而1组与2组间、3组与4组间差异均无统计学意义(P均>0.05)。结论DL-CAD对DR胸部正位片中骨折的检出效果较好,且可有效提高低年资放射科医师对胸部骨折的检出效能。Objective To evaluate the efficiency of deep-learning based computer aided diagnosis system(DL-CAD)in detecting fractures on DR chest anteroposterior films,and to explore its capability of assisting the junior radiologist.Methods①Experiment 1:A total of 547 DR chest anteroposterior films,including 361 patients with 983 chest fractures and 186 without chest fractures were retrospectively analyzed.The predictive performance of DL-CAD for fracture was evaluated.②Experiment 2:Totally 397 patients were randomly selected from experiment 1,including 211 cases with 604 chest fractures and 186 cases without chest fractures.The results of DL-CAD alone(group 1),a junior radiology resident alone(group 2),a junior radiology resident aided with DL-CAD(group 3)and a senior radiologist alone(group 4)were recorded and compared,respectively.Results①For experiment 1:Among 983 fractures,DL-CAD identified 672 fractures,641 were correctly identified and 31 were misdiagnosed,with a sensitivity of 65.21%(641/983)and F-measure of 77.46%.Out of a total of 361 fracture cases,DL-CAD identified 314 cases,misdiagnosed 6 cases,with a sensitivity of 86.98%(314/361)and F-measure of 92.22%.②Experiment 2:The sensitivity of fracture detection was 62.09%(375/604),61.59%(372/604),86.75%(524/604)and 83.44%(504/604),and the F-measure was 75.38%,74.62%,90.74%,89.84%for group 1,2,3 and 4,respectively.The detection efficacy of group 3 and 4 were both higher than that of group 1 and 2(all P<0.001).There was no significant difference between group 1 and group 2,nor group 3 and group 4(both P>0.05).Conclusion DL-CAD software showed good detection effect of fractures on DR chest anteroposterior films,which could effectively improve the diagnostic performance of junior radiologist in fracture detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.186.192