机构地区:[1]苏州科技大学,绿色印刷纳米光子工程技术研究中心,材料科学与工程学院,江苏苏州215009
出 处:《光谱学与光谱分析》2021年第1期71-79,共9页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(51873145,51673143);江苏省自然科学基金-优秀青年基金项目(BK20170065);江苏省高校自然科学研究重大项目(17KJA430016);江苏省“六大人才高峰”项目(XCL-79);江苏省第五期“333工程”项目(BRA2018340)资助。
摘 要:上转换发光是一种将长波长的激发光转化为短波长发射的反斯托克斯发光现象,三线态-三线态湮灭上转换(TTA-UC)能够在较低密度能量下被激发,且上转换量子产率高,因此获得研究者们广泛关注。关于敏化剂分子结构与上转换发光性能相关性的研究一直是TTA-UC研究领域的重要热点,选择两种代表性的卟啉钯光敏剂[PdOEP-八乙基卟啉钯(Ⅱ)和PdBrTPP-四溴苯基卟啉钯(Ⅱ)]与蒽衍生物9,10-(4-羟甲基)苯基蒽p-DHMPA发光剂组合上转换体系作为研究模型,通过一系列合成工作获得材料分子后,进一步比较两种敏化剂的光谱性质与体系最终上转换性能之间关系。通过细致研究敏化剂和发光剂的荧光发射和寿命等光谱性质对敏化剂系间窜越,三线态-三线态能量转移及三线态-三线态湮灭等能量传递过程的影响后,发现在532 nm处的摩尔吸光系数PdBrTPP(10.8 cm^-1·mmol^-1)大于PdOEP(3.0 cm^-1·mmol^-1);三线态寿命PdBrTPP(173.13μs)大于PdOEP(109.21μs)。但与p-DHMPA配对时光敏剂与发光剂的三线态能级差ΔE TT,PdOEP(0.140 eV)却高于PdBrTPP(0.062 eV),通过Stern-Volmer方程得到Stern-Volmer猝灭常数K SV和双分子猝灭常数k q值也是PdOEP略高,最终表现出上转换阈值PdOEP/p-DHMPA(22.40 mW·cm^-2)小于PdBrTPP/p-DHMPA(29.78 mW·cm^-2),上转换发光效率ΦUC,PdOEP/p-DHMPA(28.3%)大于PdBrTPP/p-DHMPA(26.8%)。因此,卟啉钯敏化剂的构效对三重态湮灭上转换发光效率影响最为重要的决定因素是敏化剂三线态高低。对于不同的敏化剂,在分子主体结构、摩尔吸光系数与三线态寿命等光谱参数差别不大的情况下,敏化剂的三线态能级越高,就将会具有更大的上转换发光效率。然而如果以总上转换能力指标来评价,PdBrTPP的共轭结构能够提升其在激发波长处吸收更多光子的能力,具有比PdOEP更高的摩尔吸光系数,造成其总上转换能力η比PdOEP高3.4倍。因此从上转换总�The photon upconversion(UC)can realize the conversion of low-frequency photons to high-frequency photons.UC based on triplet-triplet-annihilation(TTA)has the characteristics of low threshold excitability,high quantum yield,and wide spectral conversion range,which have drawn broad research interested in the world.In this paper,two kinds of porphyrin complexes(named as PdOEP and PdBrTPP,respectively)were chosen as the sensitizer doped with p-DHMPA(as the emitter)to set up the TTA-UC research models.The absorption,fluorescence and phosphorescence spectra,as well as the upconversion spectra,were measured respectively.The relationships between triplet properties and the upconversion emission were discussed.Also,the relationship between the singlet-triplet energy level difference(ΔEST)of the sensitizer and their intersystem cross-section is discussed.And lastly,the relationship between the triplet energy level difference(ΔETT)from sensitizer to the emitter and the triplet-triplet energy transfer(TTET)is discussed.The results show that PdBrTPP has longer triplet lifetime(173.13μs)than PdOEP(109.21μs)and larger molar absorption coefficient(10.8 cm^-1·mmol·L^-1)than PdOEP(3.0 cm^-1·mmol·L^-1).Meanwhile,the quenching constant(kq)of PdOEP/p-DHMPA(1.64×10^-3μmol·L^-1·s^-1)is larger than PdBrTPP/p-DHMPA(6.53×10^-4μmol·L^-1·s^-1);moreover,the threshold excitation intensity(Ith)of PdOEP/p-DHMPA(22.40 mW·cm-2)is smaller than PdBrTPP/p-DHMPA(29.78 mW·cm-2).All of these results in the upconversion efficiency(ΦUC)of PdOEP/p-DHMPA(28.3%)is larger than PdBrTPP/p-DHMPA(26.8%).Therefore,it has been proved that the most important influence on the ΦUC value is depended on the triplet energy level(ET1)of sensitizer.Those porphyrin palladium sensitizers with higher triplet energy-levels can obtain high upconversion efficiency,regardless of difference among the molar absorption coefficient and the triplet lifetime.However,when using the overall upconversion ability(η)to revalue the upconversion processes,PdBrTPP has hig
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...