一种通用的自适应分形绘图方法  

A general adaptive fractal drawing method

在线阅读下载全文

作  者:王防修 WANG Fang-xiu(School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023,China)

机构地区:[1]武汉轻工大学数学与计算机学院,湖北武汉430023

出  处:《武汉轻工大学学报》2020年第6期91-95,共5页Journal of Wuhan Polytechnic University

摘  要:针对具有IFS码的分形图给出了一种通用的绘图方法,以绘任意具有IFS码的分形图为目标,实现了分形图与绘图区域的映射关系。首先定义分形图绘图区域,其次计算分形图横向和纵向距离的最大值,接着计算分形图在绘图区域的伸缩比例因子,最后将分形图上的点映射到绘图区域而实现绘图。本方法的关键技术是建立了分形图上的点与绘图区域上的点之间的映射关系。测试表明,该方法能绘任意具有IFS码的分形图,为分形图的绘制提供了一种通用方法。This paper presents a general drawing method for fractal graphs that can be iterated with IFS.This method draws any fractal graph with IFS code and realizes the mapping relationship between fractal graph and drawing region.First,the drawing area of the fractal graph is defined.Secondly,the maximum transverse and longitudinal distances of the fractal graph are calculated.Then,the scaling factor of the fractal graph in the drawing area is calculated.Finally,the points on the fractal graph are mapped to the drawing region to realize drawing.The key technique of this method is to establish the mapping relationship between the points on the fractal graph and the points on the drawing area.Tests show that this method can draw any fractal graph with IFS code.The design of this method provides a general method for drawing fractal graphs.

关 键 词:IFS码 绘图区域 伸缩因子 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象