检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YU Tian-jun YAN Xue-feng 俞天钧;颜学峰(Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China)
出 处:《Journal of Central South University》2020年第12期3744-3753,共10页中南大学学报(英文版)
基 金:Project(21878081)supported by the National Natural Science Foundation of China;Project(222201917006)supported by the Fundamental Research Funds for the Central Universities,China。
摘 要:As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise.极限学习机(ELM)作为一种新型的神经网络模型,具有良好的学习速度和泛化能力。然而,单隐层结构的ELM在面临大规模多特征问题时往往不能取得良好的效果,为了解决这个问题,提出一个新型的多层ELM学习算法框架来提高模型的泛化能力。此外,在实际应用中,经常会因为出现噪声或异常点而导致训练数据被污染,面对被污染的数据,普通的ELM的泛化能力会下降。为了解决这个问题,利用偏差-方差分解理论,在损失函数中加入模型的偏差和方差,使模型获得最小化模型偏差和模型方差的能力,从而降低噪声信号的影响。我们提出一种新的鲁棒多层算法ML-RELM,来提升在含有离群点的复杂数据集中的鲁棒性。仿真结果表明,该方法具有较强的泛化能力和较强的抗噪声能力。
关 键 词:extreme learning machine deep neural network ROBUSTNESS unsupervised feature learning
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

