检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:James Okae Juan Du Yueming Hu
机构地区:[1]School of Automation,South China University of Technology,Guangzhou 510640,Guangdong,China
出 处:《Control Theory and Technology》2020年第4期348-361,共14页控制理论与技术(英文版)
基 金:the 2020 Guangdong International Cooperation Project(No.2019A050510007).
摘 要:The advent of convolutional neural networks has led to remarkable progress in dense stereo labeling problem,achieving superior performance over the traditional methods.However,the ill-posed nature of stereo matching makes noise(outliers)in winner-takes-all(WTA)disparity maps inevitable.This paper presents a robust statistical approach to noise detection and refinement of WTA disparity maps.In the context of noise detection,the input noisy WTA disparity map is segmented into regular grid cells(regions)with the aim of leveraging Markov random field(MRF)to infer candidate disparity labels.However,there are two key problems:there can be large severe outliers in the regions;second,the regular partition process may produce regions with mixed disparity distributions.To overcome these problems,we optimize a robust objective function over the segmented disparity map.By obtaining the optimal solution of the objective function through a maximum a posteriori estimation in a probabilistic model,we are able to infer MRF candidate disparity labels.We then apply a soft-segmentation constraint on the estimated MRF candidate disparity labels to describe and detect outliers in the disparity map.Next,an edge-preserving statistical inference that leverages the joint statistics of the disparity map and its guidance reference image is used to select correct candidate disparity for each detected outlier.Finally,a weighted median filter is applied to remove small spikes and irregularities in the resulting disparity map.Rigorous and comprehensive experiments showed that the proposed method is distributionally robust and outlier resistant,and can effectively detect and correct outliers in disparity maps.Middlebury evaluation benchmark validated the competitive performance of the proposed method.
关 键 词:Stereo matching Disparity enhancement Robust statistics Markov random field
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147