基于知识图谱的在线商品问答研究  被引量:12

Online Commodity KBQA Based on Knowledge Graph

在线阅读下载全文

作  者:王思宇 邱江涛[1] 洪川洋 江岭 WANG Siyu;QIU Jiangtao;HONG Chuanyang;JIANG Ling(School of Information Engineering,Southwestern University of Finance and Economics,Chengdu,Sichuan 611130,China;Chengdu XiaoDuo Technology Co.Ltd.,Chengdu,Sichuan 610041)

机构地区:[1]西南财经大学经济信息工程学院,四川成都611130 [2]成都晓多科技有限公司,四川成都610041

出  处:《中文信息学报》2020年第11期104-112,共9页Journal of Chinese Information Processing

基  金:国家自然科学基金(71571145)。

摘  要:现阶段,针对商品的自动问答主要由意图识别和答案配置来实现,但问题答案的配置依赖人工且工作量巨大,容易造成答案质量不高。随着知识图谱技术的出现和发展,基于知识图谱的自动问答逐渐成为研究热点。目前,基于知识图谱的商品自动问答主要是通过规则解析的方法将文本形式问题解析为知识图谱查询语句来实现。虽然减少了人工配置工作,但其问答效果受限于规则的质量和数量,很难达到理想的效果。针对上述问题,该文提出一种基于知识图谱和规则推理的在线商品自动问答系统。主要贡献包括:(1)构建一个基于LSTM的属性注意力网络SiameseATT(Siamese attention network)用于属性选择;(2)引入了本体推理规则,通过规则推理使得知识图谱能动态生成大量三元组,使得同样数据下可以回答更多问题。在NIPCC-ICCPOL 2016 KBQA数据集上的实验显示,该系统具有很好的性能。相比一些更复杂的模型,该问答系统更适合电商的应用场景。In general,Question Answering System(QAS)for the commodity is mainly built via the intention identification and answer configuration.However,the configuration of answers of questions depends on manual labor,which easily results in poor quality of answers.With the introduction and development of Knowledge Graph(KG)technology,the KG-based QAS has gradually become a hot research topic.At present,the KG-based QAS for commodity is mainly implemented by employing rules to transform questions to queries in the KG.Although the manual configuration work is reduced,the performance of QAS is limited by the quality and quantity of the rules.In order to solve above problems,this paper proposes a question answering method for online commodities based on KG and rule reasoning.The main contributions include:(1)we built an LSTM-based property attention network named SiameseATT(Siamese Attention Network)for attribute selection;(2)we employed KG to infer rules,consequently generate a large number of triples to respond more questions.Finally,experiments on the NLPCC-ICCPOL 2016 dataset show that the model obtains good performance.Our QAS is more suitable for e-commerce applications.

关 键 词:问答系统 知识图谱 注意力机制 规则推理 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象