超大型干线集装箱船配载优化  

Stowage Optimization of Ultra-Large Container Ship on Ocean-Going Mainlines

在线阅读下载全文

作  者:成保辰 郭蕴华 张青雷[4] 牟军敏 胡义 CHENG Baochen;GUO Yunhua;ZHANG Qinglei;MOU Junmin;HU Yi(Key Laboratory of Marine Power Engineering&Technology Ministry of Communications,Wuhan University of Technology,Wuhan 430063,China;School of Energy and Power Engineering,Wuhan University of Technology,Wuhan 430063,China;School of Navigation,Wuhan University of Technology,Wuhan 430063,China;China Institute of FTZ Supply Chain,Shanghai Maritime University,Shanghai 200135,China)

机构地区:[1]武汉理工大学船舶动力工程技术交通行业重点实验室,武汉430063 [2]武汉理工大学能源与动力工程学院,武汉430063 [3]武汉理工大学航运学院,武汉430063 [4]上海海事大学中国(上海)自贸区供应链研究院,上海201306

出  处:《中国航海》2020年第4期116-122,共7页Navigation of China

基  金:国家自然科学基金(51579201)。

摘  要:针对远洋干线中超大型集装箱船(Ultra-Large Container Ship,ULCS)的多港口Bay位优化问题(Multi-Port Master Bay Plan Problem,MP-MBPP),提出以堆垛为基本计算单元的混合整数规划(Mixed Integer Programming,MIP)模型。该模型以倒箱数最少、靠港时间最短为目标,根据航段距离动态,考虑船舶的结构强度约束,满足冷藏箱、重大件货物和45英尺集装箱的装载需求。该模型使用商用求解器CPLEX进行求解,试验结果表明:该模型可针对21000 TEU集装箱船多港口配载问题高效地给出可行解,为船舶大数据智能运维平台国产化解决方案的制订提供理论基础。A MIP(Mixed Integer Programming)model based on the stack position on ship is proposed to solve the MP-MBPP(Multi-Port Master Bay Plan Problem)for ULCS(Ultra-Large Container Ship)on ocean-going mainlines.The objective is to minimize the re-stowing and the total berthing time under the condition that the main stability and the stress moment of the ship are dynamically maintained.The requirements for port to load/unload is considered.The MIP model is solved by means of CPLEX optimization studio.The computational experiments indicate that the novel MIP model is able to achieve a high-quality stowage plan for containership up to 21000 TEU,providing a theoretical foundation for the localization of ship data intelligent platform.

关 键 词:超大型集装箱船 航线配载 混合整数规划 多港口 倒箱 

分 类 号:U695.22[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象