检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟繁卿 田康生[2] 韩春耀 许道明 路琪 MENG Fan-qing;TIAN Kang-sheng;HAN Chun-yao;XU Dao-ming;LU Qi(Air Force Early Warning Academy,Department of Graduates,Hubei Wuhan 430019,China;Air Force Early Warning Academy,No.4 Department,Hubei Wuhan 430019,China;Air Force Early Warning Academy,Radar NCO School,Hubei Wuhan 430019,China;PLA,No.95992 Troop,Beijing 100076,China)
机构地区:[1]空军预警学院研究生大队,湖北武汉430019 [2]空军预警学院四系,湖北武汉430019 [3]空军预警学院雷达士官学校,湖北武汉430019 [4]中国人民解放军95806部队,北京100076
出 处:《现代防御技术》2020年第6期39-47,共9页Modern Defence Technology
摘 要:研究高超声速滑翔飞行器在跳跃滑翔条件下,飞行速度、速度倾角、飞行纵程、飞行高度等状态变量的变化趋势。利用四阶龙格-库塔方法求得飞行器状态变量的数值解。以不同阶次正交多项式拟合状态变量的数值解,求解表征状态变量变化趋势的解析解。仿真结果表明,飞行速度、速度倾角、飞行高度3个阶次解析解的RMSE均值相差分别为20 m/s,0.1°,1.5 km,所以跳跃滑翔条件下的飞行速度、速度倾角、飞行高度的变化趋势可用一阶正交多项式表示。飞行纵程一阶解析解的RMSE明显大于二阶解析解和三阶解析解的RMSE,所以跳跃滑翔条件下的飞行纵程可用二阶或三阶正交多项式表示。The change trend of state variables,such as flight speed,velocity angle,longitudinal range,altitude,for hypersonic glide vehicle under the condition of skip glide are studied.The numerical solutions of the vehicle state variables are obtained with the fourth-order Runge-Kutta method.The numerical solutions of state variables are fitted with different order orthogonal polynomials,and the analytical solutions representing the variation trend of the state variables are solved.The simulation results show that the mean difference of the root mean square error(RMSE)of the three analytic solutions of flight speed,velocity angle and altitude is 20 m/s,0.1°and 1.5 km respectively,so the variation trend of flight speed,velocity angle and altitude under the skip glide condition can be expressed by the first order orthogonal polynomial.The RMSE of the first order analytic solution of the flight longitudinal range is obviously larger than that of the second order analytic solution and the third order analytic solution,so the flight longitudinal range under the skip glide condition can be expressed by the second order or the third order orthogonal polynomial.
分 类 号:V412.4[航空宇航科学与技术—航空宇航推进理论与工程] TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249