Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer  被引量:15

在线阅读下载全文

作  者:Wei Chen Xi Chen Jianbing Peng Mahdi Panahi Saro Lee 

机构地区:[1]College of Geology and Environment,Xi’an University of Science and Technology,Xi’an 710054,China [2]Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi’an 710021,China [3]Department of Geological Engineering,Chang’an University,Xi’an 710054,China [4]Division of Science Education,College of Education#4-301,Gangwondaehak-gil Chuncheon-si,Kangwon National University,Gangwon-do 24341,South Korea [5]Geoscience Platform Research Division,Korea Institute of Geoscience and Mineral Resources(KIGAM),124,Gwahak-ro Yuseong-gu,Daejeon 34132,South Korea [6]Department of Geophysical Exploration,Korea University of Science and Technology,217 Gajeong-ro Yuseong-gu,Daejeon 34113,South Korea

出  处:《Geoscience Frontiers》2021年第1期93-107,共15页地学前缘(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.41807192,41790441);Innovation Capability Support Program of Shaanxi(Grant No.2020KJXX-005);Natural Science Basic Research Program of Shaanxi(Grant Nos.2019JLM-7,2019JQ-094)。

摘  要:As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and ef

关 键 词:Landslide susceptibility Step-wise weight assessment ratio analysis Adaptive neuro-fuzzy fuzzy inference system Teaching-learning-based optimization Satin bowerbird optimizer 

分 类 号:P642.22[天文地球—工程地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象