Centre symmetric quadruple pattern-based illumination invariant measure  

基于中心对称四重模式的光照不变度量

在线阅读下载全文

作  者:Hu Changhui Zhang Yang Lu Xiaobo Liu Pan 胡长晖;张扬;路小波;刘攀(东南大学自动化学院,南京210096;东南大学复杂工程系统测量与控制教育部重点实验室,南京210096;东南大学交通学院,南京211189)

机构地区:[1]School of Automation,Southeast University,Nanjing 210096,China [2]Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University,Nanjing 210096,China [3]School of Transportation,Southeast University,Nanjing 211189,China

出  处:《Journal of Southeast University(English Edition)》2020年第4期407-413,共7页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.61802203);the Natural Science Foundation of Jiangsu Province(No.BK20180761);China Postdoctoral Science Foundation(No.2019M651653);Postdoctoral Research Funding Program of Jiangsu Province(No.2019K124).

摘  要:A centre symmetric quadruple pattern-based illumination invariant measure(CSQPIM)is proposed to tackle severe illumination variation face recognition.First,the subtraction of the pixel pairs of the centre symmetric quadruple pattern(CSQP)is defined as the CSQPIM unit in the logarithm face local region,which may be positive or negative.The CSQPIM model is obtained by combining the positive and negative CSQPIM units.Then,the CSQPIM model can be used to generate several CSQPIM images by controlling the proportions of positive and negative CSQPIM units.The single CSQPIM image with the saturation function can be used to develop the CSQPIM-face.Multi CSQPIM images employ the extended sparse representation classification(ESRC)as the classifier,which can create the CSQPIM image-based classification(CSQPIMC).Furthermore,the CSQPIM model is integrated with the pre-trained deep learning(PDL)model to construct the CSQPIM-PDL model.Finally,the experimental results on the Extended Yale B,CMU PIE and Driver face databases indicate that the proposed methods are efficient for tackling severe illumination variations.提出了一种基于中心对称四重模式的光照不变度量(CSQPIM),以解决严重光照变化人脸识别问题.首先,将对数人脸局部区域中中心对称四重模式(CSQP)的像素对之差定义为CSQPIM单元,CSQPIM单元的值可能为正或负.CSQPIM模型由正负CSQPIM单元合成得到.然后,通过控制正负CSQPIM单元的比例,CSQPIM模型可以生成多张CSQPIM图像.单张CSQPIM图像与饱和函数可以形成CSQPIM-face.多张CSQPIM图像采用扩展的稀疏表示分类(ESRC)作为分类器,从而形成基于CSQPIM图像的分类(CSQPIMC).进一步,CSQPIM模型与预先训练的深度学习(PDL)模型集成,以构建CSQPIM-PDL模型.最后,在Extended Yale B,CMU PIE和Driver人脸数据库上的实验结果表明,所提出的方法对剧烈光照变化非常有效.

关 键 词:centre symmetric quadruple pattern illumination invariant measure severe illumination variations single sample face recognition 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象