Hollow carbon microbox from acetylacetone as anode material for sodium-ion batteries  被引量:1

在线阅读下载全文

作  者:Tianyun Qiu Wanwan Hong Lin Li Yu Zhang Peng Cai Cheng Liu Jiayang Li Guoqiang Zou Hongshuai Hou Xiaobo Ji 

机构地区:[1]Hunan Province Key Laboratory of Chemical Power Source.State Key Laboratory of Powder Metallurgy,College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,Hunan,China

出  处:《Journal of Energy Chemistry》2020年第12期293-302,共10页能源化学(英文版)

基  金:supported by National Postdoctoral Program for Innovative Talents (BX201600192);the National Natural Science Foundation of China (51904342,21673298);China Postdoctoral Science Foundation (2017M6203552);National Key Research and Development Program of China (2017YFB0102000,2018YFB0104200);Hunan Provincial Science and Technology Plan (2017TP1001)。

摘  要:Carbon-based materials have attracted much interest as one of the promising anodes for sodium-ion batteries. However, low utilization of electrolyte and slow ion-transfer rate during electrochemical process hinder the further application of traditional bulk carbon. In order to enhance the diffusion kinetics and maintain the reversibility, hierarchical hollow carbon microbox was successfully prepared through a tunable bottom-up self-template routine for sodium-ion batteries. During annealing process, the morphology construction and activation happened synchronously. Based on that, a range of cross-linked porous nanosheet and hollow microbox were attained by manipulating reactant condition. The generation of texture and physical property are analyzed and are established linkages related to the electrochemical behavior. As results depicted in kinetic exploration and simulation based on cyclic voltammetry, the surfacecontrolled electrochemical behavior gradually turns to be the diffusion-controlled behavior as the hollow microbox evolves to porous nanosheet. The probable reason is that the rational microstructure/texture design leads to the accelerated diffusion kinetic procedure and the reduced concentration difference polarization. Sodium storage mechanism was deduced as reversible binding of Na-ions with local defects,including vacancies on sp2 graphitic layers, at the edges of flakes and other structural defects instead of intercalation. Bestowed by the morphology design, the broad pore width distribution, abundant defects/active sites and surface functionality, hollow microbox electrode delivers great electrochemical performances. This work is expected to propose a novel and effective strategy to prepare tunable hierarchical hollow carbon microbox and induce the fast kinetic of carbon anode material.

关 键 词:Na-ion battery Carbon anode Hollow carbon Sodium storage Electrochemistry 

分 类 号:TB33[一般工业技术—材料科学与工程] TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象