大数据嵌入的新产品开发过程  被引量:7

A study on big data-embedded new product development processes

在线阅读下载全文

作  者:王宇凡[1] 张海丽[1] Michael Song WANG Yu-fan;ZHANG Hai-li;Michael SONG(School of Economics and Management,Xi'an Technological University,Xi'an 710021,China)

机构地区:[1]西安工业大学经济管理学院,陕西西安710021

出  处:《科学学研究》2020年第12期2202-2211,共10页Studies in Science of Science

基  金:国家自然科学基金资助项目(72002162);教育部人文社会科学研究项目(20YJCZH224)。

摘  要:大数据的应用是学术和实践热点,但现有研究缺乏数据驱动的新产品开发过程研究。基于新产品开发理论,构建大数据嵌入的新产品开发过程对创新绩效作用机理的理论模型。收集跨国数据,采用回归分析,验证理论模型。结果表明:中美新大数据嵌入的商业分析和产品测试提高创新绩效。在中国,大数据嵌入的产品设计最能提升销售增长率;而在美国和新加坡,大数据嵌入的产品测试最能提升销售增长率。在中国,大数据嵌入的产品设计最能提高毛利率;而在美国,大数据嵌入的产品测试最能提高毛利率;在新加坡,则是大数据嵌入的市场投放最能提高毛利率。Big data usage is a hot topic in academics and practice,but the existing literature lacks research on data-driven new prod-uct development processes.This study develops a research model of the impact of big data-embedded new product developmentprocesses on innovation performance based on the theory of new product development.To test the proposed research model and imple-ment a cross-national comparative study,this study collected data from China,the United States,and Singapore and analyzed the datausing cross-group regression analysis methods.The empirical results indicate that the big data-embedded business analysis stage andthe big data-embedded product testing stage have a significant positive impact on innovation performance in China,the United States,and Singapore.Furthermore,the most important stage with regard to the impact on sales growth is the big data-embedded product de-sign stage in China,the big data-embedded product testing stage in the United States,and the big data-embedded product testingstage in Singapore.The most important stage with regard to the impact on gross margin is the big data-embedded product design stage in China,the big data-embedded product testing stage in the United States,and the big data-embedded commercialization stage inSingapore.

关 键 词:大数据 新产品开发过程 大数据嵌入的新产品开发过程 创新绩效 

分 类 号:C931[经济管理—管理学] F273.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象