基于混沌算法的高端装备指令数据加密方法  被引量:2

Encryption Method of High-End Equipment Instruction Data Based on Chaos Algorithm

在线阅读下载全文

作  者:霍颖瑜[1] HUO Yingyu(Foshan University, Foshan 528000, China)

机构地区:[1]佛山科学技术学院,广东佛山528000

出  处:《兵器装备工程学报》2020年第11期190-193,共4页Journal of Ordnance Equipment Engineering

基  金:广东省教育科学规划课题“物联网专业区块链技术应用教学案例探讨”(2018GXJK200)。

摘  要:针对传统高端装备指令数据加密安全性能低、耗时长等问题,提出基于混沌算法的高端装备指令数据加密方法。获取需加密的高端装备指令敏感数据,以此缩小加密范围,去除冗余数据,提高后续加密效率;针对获取需加密的高端装备指令敏感数据,使用基于混沌映射的加密方法,实现高端装备指令数据加密。测试结果显示:采用所提方法加密后安全性高达98.99%,且当密钥长度为128 bit、256 bit时,所提方法的加密耗时最大值分别为489 ms、499 ms,远低于对比方法。证明了所提方法能够提升高端装备指令数据安全性,且加密时运算耗时短,实现了加密运算时安全性能的提高以及减少耗时的目的,可实现高端装备指令数据实时性加密。Aiming at the problems of low security performance and long time-consuming of traditional high-end equipment command data encryption,a high-end equipment command data encryption method based on chaos algorithm was proposed.We obtained the sensitive data of high-end equipment command to reduce the encryption range,removed redundant data and improve the subsequent encryption efficiency;For obtaining the high-end equipment command sensitive data to be encrypted,the encryption method based on chaotic mapping was used to realize the high-end equipment command data encryption.The test results show that the security of the proposed method is as high as 98.99%,and when the key length is 128bit and 256bit,the maximum encryption time of the proposed method is 489ms and 499ms respectively,which is far lower than the comparison method.It is proved that the proposed method can improve the security of high-end equipment command data,and the operation time is short.The purpose of improving the security performance of encryption operation and reducing the time-consuming was realized,and the real-time encryption of high-end equipment command data can be realized.

关 键 词:混沌算法 高端 装备 指令 数据加密 混沌映射 

分 类 号:TJ912[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象