检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱泓睿 元国军[1] 姚成吉 谭光明[1] 王展[1] 户忠哲 张晓扬 安学军[1] Zhu Hongrui;Yuan Guojun;Yao Chengji;Tan Guangming;Wang Zhan;Hu Zhongzhe;Zhang Xiaoyang;An Xuejun(Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;Megvii Inc.,Beijing 100080)
机构地区:[1]中国科学院计算技术研究所,北京100190 [2]中国科学院大学,北京100049 [3]北京旷视科技有限公司,北京100080
出 处:《计算机研究与发展》2021年第1期98-115,共18页Journal of Computer Research and Development
基 金:中国科学院战略性先导科技专项(B类)(XDB24050200);国家自然科学基金面上项目(61972380,61702484);中国科学院计算技术研究所创新课题(20166060)。
摘 要:近年来深度学习在图像、语音、自然语言处理等诸多领域得到广泛应用,但随着人们对深度学习的训练速度和数据处理能力的需求不断提升,传统的基于单机的训练过程愈发难以满足要求,分布式的深度学习训练方法成为持续提升算力的有效途径.其中训练过程中节点间网络的通信性能至关重要,直接影响训练性能.分析了分布式深度学习中的性能瓶颈,在此基础上对目前常用的网络性能优化方案进行综述,详细阐述了目前最新的超大规模分布式训练的体系结构、优化方法、训练环境和最有效的优化方法,最后对分布式训练仍然存在的困难进行了总结,对其未来研究方向进行了展望.In recent years,deep learning has achieved better results than traditional algorithms in many fields such as image,speech,and natural language processing.People are increasingly demanding training speed and data processing capabilities for deep learning.However,the calculating ability of a single server has a limit and cannot achieve human demands.Distributed deep learning training has become the most effective method to expand deep learning training computing ability.At present,distributed deep learning faces a training bottleneck due to communication problems in the network during the training process which leads the communication network to be the most influential factor.There are currently many network performance optimization researches for distributed deep learning.In this paper,the main performance bottlenecks and optimization schemes are firstly demonstrated.Then the current state-of-art ultra-large-scale distributed training architecture and methods for optimization performance are specifically analyzed.Finally,a comparative summary of each performance optimization scheme and the difficulties still existing in distributed deep learning training are given,and the future research directions are pointed out as well.
关 键 词:分布式计算 深度学习 通信网络 性能优化 集合通信 集群网络
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7