Clustering and Resource Allocation Strategy for D2D Multicast Networks with Machine Learning Approaches  被引量:4

在线阅读下载全文

作  者:Fan Jiang Lan Zhang Changyin Sun Zeng Yuan 

机构地区:[1]Xi’an University of Posts and Telecommunications,Xi’an 710121,China [2]Shaanxi Key Laboratory of Telecommunications and Information Networks and Security,Xi’an 710121,China

出  处:《China Communications》2021年第1期196-211,共16页中国通信(英文版)

基  金:This research was supported by the National Natural Science Foundation of China(Grant Nos.62071377,61801382,61901367);the Key Project of Natural Science Foundation of Shaanxi Province(Grant No.2019JZ-06);the Key Industrial Chain Project of Shaanxi Province(Grant No.2019ZDLGY07-06);the College Science and Technology Innovation Activity Project of Xi’an University of Posts and Telecommunications(Grant No.19-B-289).

摘  要:In this paper,the clustering and resource allocation problem in device-to-device(D2D)multicast transmission underlay cellular networks are investigated.For the sake of classifying D2D users into different D2D multicast clusters,a hybrid intelligent clustering strategy(HICS)based on unsupervised machine learning is proposed first.By maximizing the total energy efficiency of D2D multicast clusters,a joint resource allocation scheme is then presented.More specifically,the energy efficiency optimization problem is constructed under the quality of service(QoS)constraints.Since the joint optimization problem is non-convex,we transform the original problem into a mixed-integer programming problem according to the Dinkelbach algorithm.Furthermore,to avoid the high computational complexity inherent in the traditional resource allocation problem,a Q-Learning based joint resource allocation and power control algorithm is proposed.Numerical results reveal that the proposed algorithm achieves better energy efficiency in terms of throughput per energy consumption.

关 键 词:device-to-device multicast communication CLUSTERING energy efficiency resource allocation Q-LEARNING 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TN929.5[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象