检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周自强 范鹏[1,2] 赵淳 ZHOU Ziqiang;FAN Peng;ZHAO Chun(NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 211106,China;Wuhan NARI Limited Liability Company of State Grid Electric Power Research Institute,Wuhan 430074,China)
机构地区:[1]南瑞集团有限公司(国网电力科学研究院),江苏南京211106 [2]国网电力科学研究院武汉南瑞有限责任公司,湖北武汉430074
出 处:《电工技术》2020年第23期94-95,98,共3页Electric Engineering
摘 要:随着分布式故障测距技术的快速发展,输电线路故障行波数据量呈现指数性增长,传统的短路故障辨识研究方法效率低下。为此,以典型的雷击故障(绕击和反击)和非雷击故障图像库为基础,提出一种基于深度学习的短路故障辨识方法,对行波数据的时域信息进行特征识别,以波头和波尾为输入量,构建输电线路短路故障辨识模型。该方法为电力公司输电线路运维提供了理论依据。With the rapid development of distributed fault location technology,the traveling wave data of transmission line fault shows exponential growth,but the traditional short-circuit fault identification method is inefficient.Therefore,based on typical lightning faults(shielding failure and back flashover)and non-lightning faults image base,a short-circuit fault identification method based on deep learning was proposed.The time-domain information of traveling wave data was characterized,and the wave head and wave tail were used as input to construct a short-circuit fault identification model for transmission lines.This method provided a theoretical basis for power company transmission line operation and maintenance.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.200.28