检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈园琼 邹北骥[1,3,4] 张美华 廖望旻 黄嘉儿 朱承璋 CHEN Yuanqiong;ZOU Beiji;ZHANG Meihua;LIAO Wangmin;HUANG Jiaer;ZHU Chengzhang(School of Computer Science and Engineering,Central South University,Changsha 410083,China;Software College,Jishou University,Zhangjiajie 427000,Hunan Province,China;Mobile Health Ministry of Education-China Mobile Joint Laboratory,Changsha 410083,China;Hunan Engineering Research Center of Machine Vision and Intelligent Medicine,Central South University,Changsha 410083,China;The College of Literature and Journalism,Central South University,Changsha 410083,China)
机构地区:[1]中南大学计算机学院,湖南长沙410083 [2]吉首大学软件学院,湖南张家界427000 [3]“移动医疗”教育部-中国移动联合实验室,湖南长沙410083 [4]机器视觉与智慧医疗工程技术中心,湖南长沙410083 [5]中南大学文学与新闻传播学院,湖南长沙410083
出 处:《浙江大学学报(理学版)》2021年第1期18-29,40,共13页Journal of Zhejiang University(Science Edition)
基 金:国家自然科学基金资助项目(61702559);国家重大科技专项(2018AAA0102102);国家重点研发计划项目(2017YFC0909901)湖南省科技计划项目(2017WK2074);湖南省自然科学基金资助项目(2018JJ3686);高等学校学科创新引智计划项目(B18059);湖南省教育厅科学研究项目(19C1535).
摘 要:随着医学影像数据的迅速增长,传统的影像分析方法给医生带来巨大挑战。利用计算机视觉技术提供自动或半自动辅助诊断,可大大缓解人工阅片压力,提高诊断的准确性,促进医疗流程的标准化建设等。目前,深度学习卷积神经网络在医学影像处理中已取得不俗表现,但深度学习“黑匣子”的不可解释性阻碍了智能医疗诊断的发展。为增强对医学影像数据处理的深度学习可解释性的了解,对近几年相关研究进展进行了综述。首先,综述了深度学习在医学领域的应用现状及面临的问题,对神经网络的可解释性内涵进行了讨论;然后,从现有深度学习可解释性的常见方法出发,重点讨论了医学影像处理的深度学习可解释性研究进展;最后,探讨了医学影像处理的深度学习可解释性的发展趋势。Medical image data are rapidly accumulating and traditional image analysis methods based on manual approaches has imposed a heavy burden on doctors.Computer vision has played an important role in alleviating the pressure of manual reading,improving the accuracy of diagnosis and promoting the standardization of medical procedures by providing automatic or semi-automatic auxiliary diagnostic methods.At present,deep learning convolutional neural network has achieved outstanding performance in various medical image processing tasks,but the unexplainability of deep learning"black box"has become a major obstacle to further explore the full potentials of intelligent medical diagnosis.This paper summarizes the research progress of deep learning interpretability in medical image processing in recent years.Firstly,we clarify the application status and problems of deep learning in the medical field,and discusses the interpretable connotation of neural networks.Then,we focus on the research progress of deep learning interpretability in medical image data processing starting from the common methods of deep learning interpretability.Finally,the interpretable development trend of medical image processing is discussed.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117