基于趋势演化分析的技术预测研究  被引量:3

Research on Technology Forecasting Based on Trend Evolution Analysis

在线阅读下载全文

作  者:陈荣[1] 贺聪聪 孙济庆[1] 严素梅[1] 刘颖[1] Chen Rong;He Congcong;Sun Jiqing;Yan Sumei;Liu Ying(Institute of Science and Technology Information,East China University of Science and Technology,Shanghai 200237,China)

机构地区:[1]华东理工大学科技信息研究所,上海200237

出  处:《科技管理研究》2020年第24期47-53,共7页Science and Technology Management Research

基  金:上海市软科学研究计划项目“基于量化趋势演化模型的技术发展预见与实证研究”(18692109200)。

摘  要:通过技术预测的量化趋势演化模型,预测挥发性有机物(VOCs)的新技术和技术发展态势,从而为该领域提供技术路径方案。基于专业术语、高频词、词共现3个维度分析得到术语集,从新技术发现和领域技术发展态势两方面提出一种基于趋势演化分析的模型,模型包括领域技术主题筛选与处理、领域新技术主题清洗、领域技术主题时序演化趋势3个模块。通过实证验证趋势演化模型的可行性,预测挥发性有机物治理技术主题主要集中于挥发性有机物催化及催化剂应用研究领域、光催化研究领域、挥发性有机物治理设备及工艺研究领域、污染源控制研究领域和污染源检测/监测研究领域。The quantitative trend evolution model for technology forecasting is used to predict the new technologies and technology development trends of volatile organic compounds(VOCs),so as to provide technical path scheme for the field.This paper extracts term set from three dimensions:technical terms,high-frequency keywords and keywords co-occurrence,presents a model based on trend evolution analysis from the perspectives of new technology discovery and field technology development,the model is divided into three parts:the screening and processing of domain technology topic,the extraction of domain new technology topic and the temporal evolution of domain technology topic.The feasibility of the trend evolution model is verified by empirical analysis,and it is predicted that the theme of volatile organic compounds(VOCs)treatment technology will mainly focus on five areas:the research field of volatile organic compounds catalysis and catalyst application,the photocatalytic research field,the research field of volatile organic compounds treatment equipment and process,the research field of pollution source control and the research field of pollution source detection/monitoring.

关 键 词:技术预测 专业术语 高频词 词共现 趋势演化 

分 类 号:G350[文化科学—情报学] G301

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象