检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张中兴 刘慧[1,2] 郭强 林毓秀[1,2] Zhang Zhongxing;Liu Hui;Guo Qiang;Lin Yuxiu(School of Computer Science and Technology,Shandong University of Finance and Economics,Jinan 250014;Digital Media Technology Key Laboratory of Shandong Province,Jinan 250014)
机构地区:[1]山东财经大学计算机科学与技术学院,济南250014 [2]山东省数字媒体技术重点实验室,济南250014
出 处:《计算机辅助设计与图形学学报》2021年第1期142-152,共11页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金重点项目浙江联合基金(U1609218);国家自然科学基金(61572286,61873145);山东省重点研发计划(2017CXGC1504);山东省省属高校优秀青年人才联合基金(ZR2017JL029);山东省高等学校优势学科人才团队培养计划。
摘 要:现今图像成像技术日益普及,但受成像设备、成像环境以及在获取图像过程中外界噪声等因素的相互制约,在实际应用中很多图像成像分辨率较低,带来诸多问题.为此,提出一种有效的基于最大后验概率和非局部低秩先验的图像超分辨重建模型.首先,该模型采用连续图像序列作为数据输入,利用单幅图像内与连续图像间的相似性作为先验知识,提升相似图像块匹配度,消除图像细节丢失现象.然后,以最大后验概率框架建模,使用高斯分布和吉布斯分布拟合模型参数,提升模型泛化能力.通过相似块的奇异值估计待求块的奇异值,采用低秩截断抑制重建过程中引入的噪声.最后,利用图像的非局部自相似性和低秩性质,以非局部低秩约束正则化图像重建过程,添加图像的局部和全局信息来提升重建效果.在标准光流数据集、纽约大学和山东省千佛山医院提供的数据集上的实验结果表明,文中基于最大后验和非局部低秩先验的模型与传统插值算法、基于重建的优秀算法相比,在5组仿真实验中,其平均峰值信噪比提升6.3 dB,在保持图像纹理特征和恢复图像细节方面可取得更好的重建性能.Nowadays imaging technologies have become more and more popular.However,due to the mutual constraints from imaging equipment,environment and other factors,such as external noise in the process of acquiring images,the image resolution is generally low in the practical applications,which causes many problems.In this paper,we propose an effective image super-resolution reconstruction model based on maximum a posterior probability(MAP)and nonlocal low-rank prior(NLP).Firstly,by inputting the continuous image sequence,the similarity inside the single image and among the image sequence is used as prior knowledge,in order to improve the matching degree of similar image patches and eliminate the loss of image details.Then,the reconstruction is modeled with MAP framework,where the parameters are fitted by Gaussian distribution and Gibbs distribution,respectively,for increasing the generalization capability.Furthermore,this model estimates the singular values of the desired patches by singular values of similar patches,and suppresses the noise by low-rank truncation.Finally,to exploit the nonlocal self-similarity and low-rank nature of images,NLP regularization is adopted to regularize the reconstruction process,which introduces the local and global image information to improve the reconstruction effect.The experimental results on the standard optical flow datasets and the datasets provided by New York University and Shandong Provincial Qianfoshan Hospital show that,this proposed model based on MAP and NLP is comparable to the traditional interpolation algorithms and the excellent reconstruction-based algorithms.This method increases the average peak signal-to-noise ratio by 6.3 dB in five simulation experiments and achieves better reconstruction performance in maintaining image texture features and restoring image details.
关 键 词:图像超分辨重建 最大后验概率 非局部低秩正则化 交替最小化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229