检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴诗辉[1] 李正欣 刘晓东[1] 周宇[1] 贺波[1] WU Shihui;LI Zhengxin;LIU Xiaodong;ZHOU Yu;HE Bo(Equi pment Management and UAV Engineering College,Air force Engineering University,Xi’an 710051,China)
机构地区:[1]空军工程大学装备管理与无人机工程学院,陕西西安710051
出 处:《系统工程与电子技术》2021年第2期410-419,共10页Systems Engineering and Electronics
基 金:国家自然科学基金(61601501,61502521)资助课题。
摘 要:针对传统离散变量优化方法存在的目标函数测算次数多、收敛性不佳等问题,借鉴边际优化理论和模式搜索算法,设计了一种基于改进边际优化的离散变量优化设计算法。借鉴边际效用优化原理,通过引入周围单位步长空间的概念,在初始点选择、边际增量设计、禁忌搜索策略等方面进行了改进,并设计了变异操作以跳出局部最优。实例分析表明,所提算法能够快速准确地收敛到局部最优解,实现以尽可能少的目标函数测算得到问题的满意解或最优解,适合于求解高维离散变量优化问题和仿真优化问题。Aiming at the problems of the traditional discrete variable optimization method such as too many times of objective function calculation and poor convergence,a discrete variable optimization design algorithm based on improved marginal optimization learning from marginal optimization theory and pattern search algorithm is designed.Based on the principle of marginal utility optimization,the concept of unit step space is introduced to improve the selection of initial point,marginal increment design,tabu search strategy,and mutation operation is designed to jump out of local optimum.Case studies show that the proposed algorithm can quickly and accurately converge to the local optimal solution,and the satisfactory solution or optimal solution can be obtained with as few objective functions as possible,which is suitable for solving high-dimensional discrete variable optimization problems and simulation optimization problems.
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44