检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李莹[1] 涂志德 刘艳芳[1,2] 唐名阳 王楠楠 LI Ying(不详)
机构地区:[1]武汉大学资源与和环境科学学院,湖北武汉430079 [2]武汉大学教育部地理信息系统重点实验室,湖北武汉430079
出 处:《地理空间信息》2021年第1期22-29,47,I0005,共10页Geospatial Information
基 金:国家自然科学基金资助项目(41771432)。
摘 要:随着城市化的快速发展,城市空间结构愈发复杂,城市功能区的快速有效识别对资源的有效配置和城市规划具有重要意义。传统的功能区识别缺乏对居民这一城市空间活动主体的动态表征,而长时间序列的出租车数据能动态表征居民出行行为,进而反映城市空间结构。动态时间扭曲(DTW)距离比传统的欧氏距离更能有效挖掘高维数据,泛化后的LB_Keogh距离和LB_Hust距离相继克服了DTW距离时间复杂度高和不对称的缺点。为了探究基于时间相似性度量的聚类算法在识别城市功能区方面的可行性,首先基于OpenStreetMap(OSM)路网数据获取研究单元,再通过滴滴订单数据提取上下车点、构建研究单元内的居民出行时间序列,然后利用PAM算法结合4种相似度度量方法进行聚类,最后结合兴趣点(POI)数据识别城市功能区,并对结果进行精度验证。结果表明,基于LB_Hust距离的PAM算法能有效挖掘高维时间序列数据,应用于城市功能区识别的精度高达86%,为应用时间序列数据进行城市研究提供了一种新的方法。With the rapid development of urbanization,the urban spatial structure is becoming much more complex,the rapid and effective identification of urban functional areas is of great significance to the effective allocation of resources and urban planning.Traditional functional area identification doesn’t take residents’ activities into consideration.Long-term serial taxi data can dynamically characterize residents’ travel behavior,and then reflect urban spatial structure.In the case of high-dimensional data mining,the dynamic time warp(DTW)distance has a great advantage over the traditional Euclidean distance.However,it has the disadvantages of high time complexity and asymmetry.These shortcomings are respectively overcome by LB_Keogh distance and LB_Hust distance.To explore the feasibility of clustering algorithm based on time series similarity measure in urban functional area identification,we used the road network data of OpenStreetMap(OSM) to divide the study area,mapping the origins and destination of taxi order data into the units and counting the number by hour separately to constructs the travel time series of residents.Then,we combined four distances with PAM clustering algorithm.Finally,we used Points of Interest(POI) data to identify urban functional areas,and verified the accuracy of the functional zoning results.The result shows that PAM algorithm based LB_Hust distance can be applied to urban functional area identification,and the recognition accuracy of functional area is up to 86%,which can provide a new method for functional area identification based on other time series data.
关 键 词:城市功能区 DTW POI数据 时间序列 PAM聚类
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145