检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Kai DA Tiancheng LI Yongfeng ZHU Hongqi FAN Qiang FU
机构地区:[1]The National Key Laboratory of Science and Technology on ATR,Nalional Universily of Defense Technology,Changsha 410073,China [2]MOE Key Laboratory of Information Fusion Technology,School of Automation,Northwestern Polytechnical University,Xi'an 710072,China
出 处:《Frontiers of Information Technology & Electronic Engineering》2021年第1期5-24,共20页信息与电子工程前沿(英文版)
基 金:Project supported by the Key Laboratory Foundation of National Defence Technology,China(No.61424010306);the Joint Fund of Equipment Development and Aerospace Science and Technology,China(No.6141B0624050101);the National Natural Science Foundation of China(Nos.61901489 and 62071389)。
摘 要:In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion,which share and fuse local measurements and posterior densities between sensors,respectively.Important properties of each fusion rule including the optimality and sub-optimality are presented.In particulax,two robust multitarget density-averaging approaches,arithmetic-and geometric-average fusion,are addressed in detail for various RFSs.Relevant research topics and remaining challenges are highlighted.
关 键 词:Multitarget tracking Multisensor fusion Average fusion Random finite set Optimal fusion
分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200