Review:Recent advances in multisensor multitarge11racking using random finite set  被引量:17

在线阅读下载全文

作  者:Kai DA Tiancheng LI Yongfeng ZHU Hongqi FAN Qiang FU 

机构地区:[1]The National Key Laboratory of Science and Technology on ATR,Nalional Universily of Defense Technology,Changsha 410073,China [2]MOE Key Laboratory of Information Fusion Technology,School of Automation,Northwestern Polytechnical University,Xi'an 710072,China

出  处:《Frontiers of Information Technology & Electronic Engineering》2021年第1期5-24,共20页信息与电子工程前沿(英文版)

基  金:Project supported by the Key Laboratory Foundation of National Defence Technology,China(No.61424010306);the Joint Fund of Equipment Development and Aerospace Science and Technology,China(No.6141B0624050101);the National Natural Science Foundation of China(Nos.61901489 and 62071389)。

摘  要:In this study,we provide an overview of recent advances in multisensor multitarget tracking based on the random finite set(RFS)approach.The fusion that plays a fundamental role in multisensor filtering is classified into data-level multitarget measurement fusion and estimate-level multitarget density fusion,which share and fuse local measurements and posterior densities between sensors,respectively.Important properties of each fusion rule including the optimality and sub-optimality are presented.In particulax,two robust multitarget density-averaging approaches,arithmetic-and geometric-average fusion,are addressed in detail for various RFSs.Relevant research topics and remaining challenges are highlighted.

关 键 词:Multitarget tracking Multisensor fusion Average fusion Random finite set Optimal fusion 

分 类 号:TP273.5[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象